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In this supplementary material, we provide the following
additional details:
• Motivation for the use of Pose over Flow.
• Datasets and Evaluation Protocols
• Additional Implementation Details
• The Effects of Noisy Poses
• Improvement Cases
• Comparison with baseline and 3D skeleton model
• Feature Analysis of 2D-SIM

A. Motivation for the use of Pose over Flow.
While optical flow is useful for web video datasets where
actions are defined by prominent motion, such as in Ki-
netics [8] and AVA [7], it is not effective on ADL datasets
where the motion cues are more subtle [3, 4]. A majority of
approaches that distil optical flow into the RGB stream are
only evaluated web video datasets. In Table 1, we present
results on Smarthome using optical flow. To demonstrate
pose’s superiority over optical flow for ADL, we distill op-
tical flow into an RGB model following MARS [2]. For a
fair comparison with our methods, we also adapt the CNN
backbone in MARS with TimeSformer, denoted as MARS∗.

Table 1. Justification for use of Pose over Optical Flow.

Smarthome RGB only Pose Only Flow Only MARS MARS∗ π-ViT
CS 68.4 57.5 51.8 58.1 60.7 72.9

CV2 60.6 35.2 34.1 45.7 56.5 64.8

B. Datasets and Evaluation Protocols
We evaluate our methods on three popular Activities of
Daily Living (ADL) datasets.
Toyota-Smarthome [3] (Smarthome, SH) provides 16.1K
video clips of elderly individuals performing actions in a
real-world smarthome setting. The dataset contains 18 sub-
jects, 7 camera views, and 31 action classes. For eval-
uation, we follow the cross-subject (CS) and cross-view
(CV1, CV2) protocols. Due to the unbalanced nature of
the dataset, we use the mean class-accuracy (mCA) perfor-
mance metric. The dataset provides 2D and 3D skeletons

containing 13 keypoints that were extracted using LCRNet
[12], which are used to generate the inputs to our 2D-SIM
and 3D-SIM approaches.
NTU120 [9] provides 114K video clips of subjects perform-
ing actions in a controlled laboratory setting. The dataset
consists of 106 subjects, 3 camera views, and 120 action
classes. We follow the cross-subject (CS) and cross-setup
(CSet) protocols for evaluation, and report the top-1 classifi-
cation accuracy. The dataset provides 2D and 3D skeletons
containing 25 keypoints extracted using Microsoft Kinect
v2 sensors, which we use to generate the inputs to our 2D-
SIM and 3D-SIM approaches.
NTU60 [13] is a subset of NTU120 that provides 56.8K
video clips of subjects performing actions in a controlled
laboratory setting. The dataset consists of 40 subjects, 3
camera views, and 60 action classes. For evaluation, we fol-
low the cross-subject (CS) and cross-view (CV) protocols,
and report the top-1 accuracy. For our ablations, we follow
the cross-view-subject (CVS) protocol, CVS1, as proposed
in [14]. In the CVS protocols, the subjects and viewpoints
in the training set are distinct from the subjects and view-
points in the testing set. Specifically, only the 0◦ viewpoint
from the NTU60 CS training protocol is used for training,
while testing is carried out on the 0◦, 45◦, or 90◦ view-
points from the NTU60 CS test split, which are referred to
as CVS1, CVS2, and CVS3, respectively. We use the CVS
protocols because they provide a better represent the cross-
view challenge. The dataset provides 2D and 3D skeletons
containing 25 keypoints extracted using Microsoft Kinect
v2 sensors, which we use to generate the inputs to our 2D-
SIM and 3D-SIM approaches.

C. Implementation Details (Additional)

We train all our models on 8 RTX A5000 or A6000 GPUs.
Our models. In all experiments, we use a 12 layer TimeS-
former [1] video transformer backbone and follow a training
pipeline similar to [1]. We use Kinetics400 pretraining for
Smarthome and SSv2 pretraining for NTU60 and NTU120.
For fine-tuning, we train our models for 15 epochs. The
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RGB inputs to our models are video frames of size 8 ×
224 × 224 for Smarthome and a size of 16 × 224 × 224
for NTU60 and NTU120. Frames are sampled at a rate of
1
32 for Smarthome and uniform sampling is used for NTU60
and NTU120. As done in [4, 5], we extract 224 × 224 hu-
man crops from the video before feeding them to our mod-
els. This ensures that the video frames input to our model
will contain human skeleton joints.

Figure 1. Illustration of the human joint partitions used when train-
ing Hyperformer on Smarthome. Color denotes partition, dashed
outline indicates interpolated human joint.

Other video transformers. For results we generate our-
selves using other video transformer methods [10, 11] (in-
dicated by † in SoTA tables), we follow the default con-
figurations suggested by each method. For a fair compari-
son with our models, we also utilize Kinetics400 pretrain-
ing for Smarthome and SSv2 pretrainining for NTU60 and
NTU120.
3D skeleton model. As mentioned in the main paper, we
use Hyperformer [15] as the pretrained 3D skeleton model
in 3D-SIM. For Smarthome, we train Hyperformer using
the human joint partition shown in Figure 1, otherwise we
follow the same training configuration proposed in [15].
Note that we interpolate the base-of-spine and top-of-spine
keypoints. This allows the origin of the joints to be centered
at the spine, a required pre-processing step in Hyperformer.

D. The Effects of Noisy Poses
Figure 2 highlights the challenges encountered in real-
world human pose estimation, particularly evident in the
Smarthome dataset. Issues such as occlusions and unusual
camera angles frequently degrade the accuracy of pose es-
timations in such settings. It is worthwhile to mention that
datasets like NTU tend to exhibit fewer of these complica-
tions due to their controlled collection environments and use
of specialized sensors for collecting poses, both of which
are impractical in the real world.

These observations exemplify the need to design algo-
rithms that are robust to noisy poses. In Figure 3, we intro-

Table 2. Top-5 classes improved by 2D-SIM and 3D-SIM on
Toyota-Smarthome CS and NTU120 CS.

(a) 2D-SIM

Action name Improvement
over baseline

Toyota-Smarthome
Drink.FromGlass +33.3%

Use Tablet +13.3%
Drink.Frombottle +11.4%

WatchTV +10.0%
MakeCoffee.PourGrains +9.5%

NTU120
Cut Paper w/ Scissors +4.0%

Reading +2.9%
Thumb down +2.4%

Shoot at basket +2.3%
Clapping +2.2%

(b) 3D-SIM

Action name Improvement
over baseline

Toyota-Smarthome
Eat Snack +13.7%

Maketea.Boilwater +12.5%
Cook.Usestove +11.1%
Pour.Frombottle +10.6%

WatchTv +10.0%
NTU120

Rub hands together +6.9%
Make victory sign +5.0%

Wield knife at person +4.5%
Yawn +4.4%

Play magic cube +3.7%

duce varying levels of noise into 2D-SIM and 3D-SIM to
evaluate their effectiveness in the presence of noisy poses.
For 2D-SIM, we directly introduce pixel-level noise into
the human skeleton joints. For each joint coordinate, we
randomly sample two values between 0 and the designated
noise level and add it to the joints x and y coordinates. For
3D-SIM, we add noise to the 3D skeleton features used as
input to the model. The levels of noise chosen are based on
the standard deviations of the features, and then, similarly
to 2D-SIM, we randomly sample values between 0 and the
designated noise level and add it to the feature vector to
generate noisy 3D skeleton features.

In Figure 3a, we observe that 2D-SIM is sensitive to very
noisy poses, causing the performance to match the base-
line. This makes sense as with wildly inaccurate poses, the
extra supervision provided by 2D-SIM will be wasted on
non-salient RGB regions. At low to medium levels of noise
(20, 40), which are more likely to apply in real-world pose
estimation, 2D-SIM still provides improvements over the
baseline. Figure 3b shows the effect of noisy 3D skeleton
features on 3D-SIM. We see that 3D-SIM is more robust to
high levels of noise, consistently outperforming the baseline
across all noise levels. This can be attributed to the inherent
robustness of 3D skeleton models to noisy poses, as shown
in previous research [6].

E. Improvement Cases
In Table 2, the top-5 action classes demonstrating signif-
icant performance enhancements via 2D-SIM and 3D-SIM
over the baseline in the Toyota-Smarthome CS and NTU120
CS protocols are presented. Notably, the largest improve-
ments of 2D-SIM are observed in actions with fine-grained
appearance details, such as Drink from glass and Use Tablet.
This indicates the effectiveness of 2D-SIM on actions where
modeling fine-grained appearance is necessary. For 3D-
SIM, the largest improvements come from actions with fine-
grained motion, e.g., rub hands together.

In Table 3 and Table 4, we present the the top-5 class-



Action: Cook.CleanUp

Action: Sit down

(a) Sample videos and poses from Toyota-Smarthome.

Action: Cheer then drink

Action: Sit down

(b) Sample videos and poses from NTU.

Figure 2. Visualizations of poses from Smarthome (a) and NTU (b).
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Figure 3. Effects of noisy poses on 2D-SIM and 3D-SIM on
Smarthome CS and NTU CVS1 protocols.

pairs that are improved by 2D-SIM and 3D-SIM on the
Toyota-Smarthome CS and NTU120 CS protocols. The
metric displayed is the raw number of predictions, i.e., the
number Action 1 samples that were misclassified as Ac-
tion 2. We observe that the baseline often confuses actions
with similar appearance, such as confusing Takepills with
UseTelephone or Drink.Frombottle with Drink.Fromglass.

Table 3. Top-5 class-pairs improved by 2D-SIM over the Baseline
(TimeSformer) on Toyota-Smarthome CS and NTU120 CS.

Action 1 Action 2 2D-SIM Improvement
over baseline

Toyota-Smarthome
Takepills UseTelephone +61.5%

Pour.Frombottle Pour.Fromcan +60.0%
Drink.Frombottle Drink.Fromglass +57.1%

WatchTV ReadBook +40.6%
Drink.FromCan WatchTV +29.4%

NTU120
Toss coin Make ok sign +38.9%
Reading Writing +23.5%

Make victory sign Make ok sign +14.3%
Yawn Blow nose +13.6%

Cut Paper w/ Scissors Staple book +12.7%

Table 4. Top-5 class-pairs improved by 3D-SIM over the Baseline
(TimeSformer) on Toyota-Smarthome CS and NTU120 CS.

Action 1 Action 2 3D-SIM Improvement
over baseline

Toyota-Smarthome
WatchTV UseTelephone +42.85%
WatchTV ReadBook +33.33%

Cook.Cleanup Walk +29.41%
Cook.Cleandishes Cook.Cleanup +15.15%

Enter Leave +7.10%
NTU120

Yawn Flick hair +54.55%
Rub hands together Clapping +32.43%

Yawn Blow nose +25.76%
Make victory sign Make okay sign +25.51%

Cut paper Staple book +13.64%



We also observe that 2D-SIM can improve performance in
such cases, owing to the additional supervision applied to
the salient RGB regions. We also observe that the baseline
confuses actions with similar motion, such as Yawn vs Blow
nose, and show that 3D-SIM improves the performance in
these cases.

Table 5. Comparison of our methods to the 3D skeleton model
used in 3D-SIM (Hyperformer) and the baseline TimeSformer.

Method Toyota-Smarthome NTU60 NTU120
CS CV1 CV2 CS CV CS CSet

Hyperformer [15] 57.5 31.6 35.2 90.7 95.1 86.6 88.0
π-ViT + 3D Poses 73.1 55.6 65.0 96.3 99.0 95.1 96.1
TimeSformer [1] 68.4 50.0 60.6 93.0 97.2 90.6 91.6

+ 2D-SIM 72.5 54.8 62.9 93.0 97.0 90.5 91.6
+ 3D-SIM 71.4 51.2 62.3 94.0 97.8 91.8 92.7
π-ViT 72.9 55.2 64.8 94.0 97.9 91.9 92.9

F. Comparison with baseline and 3D skeleton
model

In Table 5, we compare our methods with the baseline
TimeSformer [1], our video transformer backbone, and with
Hyperformer [15], the 3D skeleton model used in 3D-SIM.
We first observe the disparity in performance on Smarthome
between Hyperformer and TimeSformer, owing this to the
noisy poses in Smarthome and the importance of appear-
ance in distinguishing the actions. This is further evident
from the relatively small improvement seen on Smarthome
when adding 3D poses to π-ViT compared to NTU60 and
NTU120. On the NTU datasets, we observe that the TimeS-
former outperforms Hyperformer, but that both modalities
are quite complementary (as evidenced by π-ViT + 3D
Poses).
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Figure 4. Average feature distance between pose tokens.

G. Feature Analysis of 2D-SIM
Figure 4 presents an investigation into the feature space of
2D-SIM, illustrating its enhanced capability in learning dis-
criminative features for various human joints in comparison
to a baseline model. This analysis was conducted by select-
ing a subset of videos from the Toyota-Smarthome dataset.
The methodology involved computing the average distance
of features between tokens corresponding to human joints

across different layers within the video transformer. We
find that towards the later layers of the video transformer,
2D-SIM is able to refine the representations to better dis-
ambiguate between the various human joints.
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