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A. Solution to Equation 10
The analytical solution to Equation 10 is:

f
(t−1)
k =

∑
n wnmove(αk ⊙ v̂

(t−1)
n ,−ok,n)∑

n wnmove(αk,−oi,n)
;

∀k ∈ {1, · · · ,K},
(1)

∗Work done during an internship at Meta AI.

where n ∈ {1, · · · , N}∪{a}, ok,a is the layout of the given
image.

B. Discussion on Layer Masks

B.1. Elliptical blob masks

We mainly use bounding boxes for layer masks in the main
paper. The layer masks can also be represented by other
shapes, for example, elliptical blobs [6]. Blobs are param-
eterized by centroids, scales, and angles. Moreover, blobs
have alpha values decaying from the centroids to soften the
edges. The edge sharpness can be controlled by a parameter
c: a smaller c leads to stronger edge sharpness and c = 0
corresponds to hard thresholding. Due to the standard Gaus-
sian noise assumption at the initial stage of diffusion, we set
c = 0 so that alpha values are binary. We show results of
using blobs for layer masks in Figure 1.

B.2. Soft masks with modified α-blending

Soft masks can be enabled by a modified rendering equa-
tion. As discussed in the main paper, the standard Gaussian
noise assumption introduced by image diffusion models re-
quires

∑K
k=1 α

2
k = 1. On the other hand, the standard α-

blending described in Equation 4 results in alpha values that
sum to one. Therefore, the assumption can only be fulfilled
when α is binary. To use soft masks, we may modify α-
blending to:

αk = move(mk, ok)

k−1∏
j=1

√
(1− move(mj , oj)2), (2)

which ensures
∑K

k=1 α
2
k = 1 given an all-one background.

For soft masks, we use two blobs with c = 0.05, s = 20
and c = 0.1, s = 10 respectively, where s is a parameter
that controls the blob size. We show results rendered by the
modified α-blending in Figure 1.
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Figure 1. Blobs as layer masks. Layer masks can also be represented using elliptical blobs instead of bounding boxes. In addition, the
updated α-blending can handle soft masks instead of binary masks.

C. Related Works

C.1. Text-to-image diffusion models

Recently, diffusion models have demonstrated unprece-
dented results on text-to-image generation [5, 10, 16, 19,
21], i.e., the task of generating an image from a textual
description, by learning to progressively denoise an image
from an input standard Gaussian noise. In the literature, T2I

models vary with different design choices, including gener-
ation in pixel space [21] or latent space [19] and different
denoiser architectures including U-Net [20]-based [10] or
transformer [27]-based [17]. Unlike previous image editing
approaches that leverage attention cues [2, 7, 8, 26] or fea-
ture correspondence [15, 23, 25], our approach is agnostic
to the specific design choice of the denoiser.



C.2. Layout conditioned image diffusion

Extensive study has been made to add layout conditions to
text-to-image diffusion. For training-free approaches, Mul-
tiDiffusion [1] and locally conditioned diffusion [18] pre-
dict noise using local prompts and composite them with
region masking, Layout-Guidance [3] leverages the cross-
attention map to provide the spatial guidance. For training-
based approaches, ControlNet [29] and GLIGEN [11]
finetunes the pretrained image diffusion model on paired
layout-image datasets. Different from the setting in this
paper, they do not focus on spatial disentanglement, thus
changing layouts will also affect contents. Additionally, a
line of work studies joint layout and content conditioning.
Paint-by-Example [28] position reference objects to spe-
cific locations of a given image through additional model
tuning, Collage Diffusion [22] harmonizes the collage of
reference images using the image-to-image technique [14]
improved by ControlNet [29]. Recently, a concurrent work
Anydoor [4] demonstrates object moving using the paint-
by-example pipeline. Our framework provides a mid-level
representation and hence enables controllable scene gener-
ation, which is beyond the capability of these works.

D. Experiment Details
D.1. Dataset

Caption Generation. We use a large language model to
automatically generate image captions. The prompt we
used is: Please give me 100 image captions that describe
a single subject in a scene. The format is as follows: “A
cat is sitting in a museum. Subject: cat. Scene: museum.”.
“Cat” is the subject and “museum” is the scene. Example
image captions are as follows:
1. A bird is perched on a windowsill. Subject: bird. Scene:

windowsill.
2. A goldfish swims in a bowl. Subject: goldfish. Scene:

bowl.
3. A kite soars above the beach. Subject: kite. Scene:

beach.
4. A bicycle leans against a brick wall. Subject: bicycle.

Scene: brick wall.
5. A turtle crawls along a sandy path. Subject: turtle.

Scene: sandy path.
6. A sunflower stands tall in a garden. Subject: sunflower.

Scene: garden.
7. A butterfly rests on a blooming flower. Subject: butterfly.

Scene: blooming flower.
8. A tree casts its shadow on a playground. Subject: tree.

Scene: playground.
9. A cloud drifts over a mountain peak. Subject: cloud.

Scene: mountain peak.
10. A snake slithers through the tall grass. Subject: snake.

Scene: tall grass.

Subject and scene descriptions are used as foreground and
background local descriptions respectively. We query the
language models 10 times to collect 1,000 image captions.

Image Generation. We use an open-source 512 × 512
text-to-image latent diffusion model to generate images
from the image captions. We generate 20 images for each
caption, which results in 20,000 images. Then, we use an
open-vocabulary segmentation model GroundedSAM [12]
to segment the foreground object. The following rule-based
filters are used to remove images with no or ambiguous
foreground objects:
• No bounding box detected.
• Bounding box confidence lower than 0.5.
• Bounding box area is larger than 60% of the image size.
• Segmentation mask is smaller than 5% of the image size.
5,092 images are left after filtering. Each image is associ-
ated with an image caption, local descriptions, and a seg-
mentation mask.

D.2. Metrics

We detail evaluation metrics as follows:
• Mask IoU. We employ the segmentation model to pre-

dict the foreground mask on the generated images. One
of the two target layouts contains the original annotated
mask. We can, therefore, compute a mask IoU between
the annotated mask and the shifted mask.

• Consistency. We compute the mask IoU between the
foreground masks for the two generated images. To com-
pensate for masks that move out of the canvas, we align
the masks in two different layouts respectively and take
maximum IoU.

• Visual Consistency. For two images generated from dif-
ferent layouts, we segment foreground objects out, paste
them on the same location on a white canvas, and com-
pute LPIPS to measure object-level visual consistency.

• LPIPS. We compute the LPIPS distance between the two
generated views to examine the cross-view perceptual
consistency.

• SSIM. We compute the SSIM similarity between the two
generated views to examine the structural similarity.

• FID. We compute the FID between the edited images and
the test dataset to evaluate the image quality.

In addition, we report KID and CLIP Score.
• KID. Similar to FID, we report KID as well for image

quality evaluation.
• CLIP Score. We measure the similarity between the im-

age embedding and the text embedding to ensure that the
text alignment does not degrade after editing.

D.3. Implementation

We implement our approach on the Diffusers library using
publicly available text-to-image latent diffusion models. It



employs a 64 × 64 latent and generates 512 × 512 image.
For classifier-free guidance [9], we set the guidance scale to
7.5. We employ the DDIM sampler [24] and the number of
sampling steps is 50. For most qualitative experiments, we
set N = 8, τ = 25, and µk, νk to 40% of the image size.
For image editing experiments, we use GroundedSAM [12]
to segment objects and use the segmentation masks as layer
masks with manually assigned local prompts. We run all
experiments on a single machine equipped with 8 32GB
NVIDIA V100 GPUs. With multi-GPU parallelization, the
total running time of a scene optimization and inference is
less than 5 seconds.

E. Qualitative Results
E.1. More generated scenes

We show more examples of controllable scene generation
in Figure 2.

E.2. Comparison of object moving

We provide a comparison with Self-Guidance [7] and a spe-
cialized inpainting model on object moving in Figure 3.

E.3. Real image editing

Our approach can edit in-the-wild images. We demonstrate
multi-object moving on real images using examples pro-
vided by Epstein et al. [7] in Figure 4.

E.4. Compatibility with different denoisers

Our approach is compatible with general text-to-image dif-
fusion models. We use a DDIM sampler and a 512 × 512
latent diffusion model in the main paper and show in Fig-
ure 5 that our approach also works with different samplers:
• DPMSolver. We set T = 25 and τ = 12 and the infer-

ence gets even faster. We use the same random seed as
the scene shown in Figure 1-Top to show the difference
from DDIM-sampled results.

and different denoiser architectures:
• An open source 1024 × 1024 latent diffusion model.

The model has a larger latent space and generates higher-
resolution images compared to the model we used in the
main paper. It also employs a different language condi-
tioning mechanism.

• An open source pixel diffusion model. The model de-
noises on the pixel space. It has three stages, the first
stage generates a 64 × 64 image, and the second and the
third stage upsample the image to 1024×1024 resolution.
Here we only show the output from the first stage.

E.5. Different random seeds

Although our approach keeps the content consistent in dif-
ferent views of a scene, the randomness can be introduced
by changing the random noise during initialization. We

show the results of three different random seeds for the ob-
ject moving tasks in Figure 6.

E.6. Scenes after object replacement

A scene remains rearrangeable after object replacement. We
show results of manipulating scenes with replaced objects
in Figure 7.

F. Quantitative Results
F.1. Full results for controllable scene generation

We show full results for controllable scene generation with
standard deviations in Table 1.

F.2. Full results for object moving comparions

We present full results for object moving comparisons with
standard deviations, KID, and CLIP score in Table 2

F.3. Full results for ablation on scene generation

We show full results for N and τ ablation on controllable
scene generation with standard deviations in Table 3.

F.4. Additional results for object moving ablation

We provide additional results for N and τ ablation on object
moving in Table 4.
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Figure 2. More examples of generated controllable scene. We apply sequential manipulations using the layered control.



Table 1. Quantitative comparison for controllable scene generation. †: without the solid color bootstrapping strategy.

Method Mask IoU ↑ Consistency ↑ LPIPS ↓ SSIM ↑

MultiDiffusion [1]† 0.263 ± 0.004 0.257 ± 0.002 0.521 ± 0.002 0.450 ± 0.002
MultiDiffusion [1] 0.466 ± 0.001 0.436 ± 0.004 0.519 ± 0.001 0.471 ± 0.002

Ours† 0.310 ± 0.002 0.609 ± 0.003 0.198 ± 0.001 0.761 ± 0.001
Ours 0.522 ± 0.001 0.721 ± 0.002 0.215 ± 0.001 0.762 ± 0.000

Table 2. Object moving comparison of RePaint [13], Inpainting, and our method. †: Inpainting means a specialized inpainting model
trained with masking.

Method FID ↓ KID ×103 ↓ Mask IOU ↑ CLIP Score ↑ LPIPS ↓ SSIM ↑

RePaint 10.267 ± 0.020 1.167 ± 0.026 0.620 ± 0.001 0.321 ± 0.000 0.278 ± 0.001 0.671 ± 0.000
Inpainting† 6.383 ± 0.039 0.099 ± 0.014 0.747 ± 0.002 0.321 ± 0.000 0.264 ± 0.001 0.680 ± 0.001

Ours 5.289 ± 0.022 0.059 ± 0.014 0.817 ± 0.003 0.321 ± 0.000 0.263 ± 0.001 0.709 ± 0.000

Table 3. Ablation on controllable scene generation. We compare our method by varying the number of views N and image diffusion
steps τ . †: Layout using deterministic sampling at fixed intervals.

N τ Mask IoU ↑ Consistency ↑ LPIPS ↓ SSIM ↑

2 25 0.477 ± 0.020 0.619 ± 0.017 0.274 ± 0.004 0.697 ± 0.004
8† 25 0.485 ± 0.006 0.638 ± 0.011 0.269 ± 0.002 0.699 ± 0.004
8 25 0.499 ± 0.005 0.657 ± 0.012 0.274 ± 0.001 0.689 ± 0.004

2 25 0.477 ± 0.020 0.619 ± 0.017 0.274 ± 0.004 0.697 ± 0.004
2 13 0.483 ± 0.024 0.661 ± 0.023 0.227 ± 0.004 0.753 ± 0.003
2 0 0.501 ± 0.015 0.699 ± 0.019 0.208 ± 0.005 0.778 ± 0.004

8 0 0.515 ± 0.010 0.723 ± 0.016 0.211 ± 0.002 0.767 ± 0.003

Table 4. Object moving ablation. We compare our method with inpainting-based approaches on object moving for varying number of
views N and image diffusion steps τ .

N τ FID ↓ KID ↓ Mask IOU ↑ CLIP Score ↑ LPIPS ↓ SSIM ↑

2 25 5.918 ± 0.018 -0.020 ± 0.004 0.788 ± 0.003 0.322 ± 0.000 0.294 ± 0.001 0.672 ± 0.001
8 25 5.890 ± 0.032 -0.010 ± 0.004 0.794 ± 0.002 0.321 ± 0.000 0.289 ± 0.001 0.676 ± 0.000

2 38 7.401 ± 0.025 -0.079 ± 0.009 0.667 ± 0.003 0.322 ± 0.000 0.368 ± 0.001 0.598 ± 0.001
2 25 5.918 ± 0.018 -0.020 ± 0.004 0.788 ± 0.003 0.322 ± 0.000 0.294 ± 0.001 0.672 ± 0.001
2 13 5.289 ± 0.022 0.059 ± 0.014 0.817 ± 0.003 0.321 ± 0.000 0.263 ± 0.001 0.709 ± 0.000
2 0 5.320 ± 0.029 0.182 ± 0.020 0.836 ± 0.003 0.322 ± 0.000 0.255± 0.001 0.722 ± 0.001



“a photo of a fluffy cat sitting on a museum bench looking at an oil painting of cheese”

Self-Guidance

Ours

“a photo of a raccoon in a barrel going down a waterfall”

“distant shot of the Tokyo tower with a massive sun in the sky”

b) Move Up c) Move down d) Move left e) Move right f) Resizea) Original
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Inpainting

Inpainting
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Figure 3. Qualitative comparison on object moving. Self-Guidance [7] and inpainting generates varing content across editings.



Move sodaReconstruct Swap fries and hot dogMove soda and fries Shrink soda

Move éclairReconstruct Move allSwap éclair and espresso Shrink éclair

Self-Guidance
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Figure 4. Multi-object moving on real images. Examples are borrowed from Epstein et al. [7].
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Add windowAdd bed Shrink allMove all Clone window

a) DPMSolver
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Figure 5. Diffusion sampler and architecture. We present editing results with different diffusion samplers and denoiser architectures to
show our method is applicable in various configurations.
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Figure 6. Results with different random seeds in the object moving task.
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“bed, wooden cabinet, window, bedroom”

Shrink sofaReplace bed with sofa
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Move allMove mirror Move mirrorShrink mirrorReplace window with mirror

Figure 7. Manipulating scenes with replaced objects. We first replace an object in the scene before manipulating the scene layout show
the corresponding editing results.
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