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Supplementary Material

In this supplementary document, we first provide addi-
tional details in Sec. A, then, we further provide additional
experiment results, more thorough ablation studies and per-
formance analysis in Sec. B. We also provide a supplemen-
tary video where we show additional visual comparisons.

A. Details
A.1. Dataset Details

Synthetic Dataset. We evaluate on the synthetic
dataset [13] provided in D2NeRF [52]. This dataset in-
cludes five sequences with floating objects in the room gen-
erated by Kubric [12]. Upon careful examination, we notice
that the training and test images within the Chair scene are
misaligned in terms of their coordinate systems, therefore
we decide to temporarily exclude this particular scene.
RobustNeRF Dataset. As illustrated in the original Ro-
bustNeRF, there are unintentional changes throughout the
capturing process (both the training and test set) for the
dataset, including the tablecloth movement in the Android
scene and the curtain in the Statue scene, which may ad-
versely affect the performance of SAM-based methods. In
contrast, both RobustNeRF [39] and our method can natu-
rally accommodate these unintentional changes.
On-the-go Dataset. On-the-go dataset is acquired with an
assortment of devices, including an iPhone 12, a Samsung
Galaxy S22 and a DJI Mini 3 Pro drone. During the cap-
ture of each sequence, the exposure, white balance, and ISO
are fixed. This dataset features a wide range of dynamic
objects including pedestrians, cyclists, strollers, toys, cars,
robots, and trams), along with diverse occlusion ratios rang-
ing from 5% to 30%. This diversity ensures a rich and chal-
lenging environment for our assessments. The resolution of
images captured by the iPhone 12 and DJI drone(Drone se-
quence) is 4032⇥3024, whereas the resolution of sequences
captured by the Samsung Galaxy S22(Arc de Triomphe and
Patio sequence) is 1920⇥1080.

A.2. Implementation Details of NeRF On-the-go
Our work is built upon the Mip-NeRF 360 [1] codebase
¶. In addition to our proposed loss, we keep the original
distortion loss and interval loss in Mip-NeRF 360 [1]. We
run our method on a server with an AMD EPYC 9554 64-
core processor and 4 NVIDIA RTX 4090 GPUs. For each
scene, we run 250000 iterations with a batch size of 16384,
which typically takes 12 hours to finish. Through our as-
sessment, we observed that our model, after only one hour

¶https://github.com/google-research/multinerf

of training, already demonstrated superior quality compared
to RobustNeRF, even after it underwent 12 hours of train-
ing. We downsample images by 8x to keep it the same as
RobustNeRF (except Arc de Triomphe and Patio is down-
sampled by 4x to make it roughly the same as Robust-
NeRF). We select the dilated sample patches with a size
of 32 ⇥ 32 and a dilation rate of 4. The SSIM window
size is 5 ⇥ 5. For hyperparameters in loss terms, we set
�1 = 100,�2 = 0.5,�3 = 0.5,�4 = 0.1 for all datasets.

A.3. Baseline Details

RobustNeRF [39]. For our own run of RobustNeRF [39],
we enable the appearance embedding (GLO) since it de-
livers consistently better results as illustrated in Robust-
NeRF [39] as shown in Table 2.
Mip-NeRF 360 + SAM. This is a baseline that we intro-
duce for evaluation. For RobustNeRF [39] dataset, we use
an interactive tool|| to click each distractor in every image.
For On-the-go dataset, we pre-identify the dynamic objects’
categories and consider this as an oracle for this method.
To detect the dynamic object’s bounding box, we employed
YOLOv8** to generate the bounding box for the distrac-
tors. Following this, Segment Anything Model (SAM) [22]
is applied with the detected bounding box to get the corre-
sponding segmentation. In the absence of a ’robot’ class
in YOLOv8, we identify the robot in the Spot scene by
selecting the bounding box encompassing the largest area
of yellow. Some imperfect masking results are shown in
Fig. A, primarily attributable to factors such as partial ob-
servation, reflections of distractors, and ambiguous classifi-
cations, like the categorization of a statue as a human.

B. Additional Experiments
B.1. Evaluation

Kubric Dataset [13]. We evaluate on Kubric synthetic
dataset provided in D2NeRF [52], with qualitative results
shown in Table A. Our performance aligns with Robust-
NeRF, this is due to saturation on this simple dataset. We
include the result of this dataset solely for the sake of a com-
prehensive evaluation.
Comparison on RobustNeRF Dataset [39]. In this sec-
tion, we present the results obtained from the BabyYoda
scene, as summarized in Table B. Our methodology yields
improved outcomes compared to the open-source imple-
mentation of RobustNeRF. However, these results do not

||https://github.com/open-mmlab/playground
**https://github.com/ultralytics/ultralytics.git

https://github.com/google-research/multinerf
https://github.com/ultralytics/ultralytics.git


Car Cars Bag Pillow
LPIPS# MS-SSIM" PSNR" LPIPS# MS-SSIM" PSNR" LPIPS# MS-SSIM" PSNR" LPIPS# MS-SSIM" PSNR"

NeRF-W [27] 0.218 0.814 24.23 0.243 0.873 24.51 0.139 0.791 20.65 0.088 0.935 28.24
NSFF [24] 0.200 0.806 24.90 0.620 0.376 10.29 0.108 0.892 25.62 0.782 0.343 4.55
NeuralDiff [48] 0.065 0.952 31.89 0.098 0.921 25.93 0.117 0.910 29.02 0.565 0.652 20.09
D2NeRF [52] 0.062 0.975 34.27 0.090 0.953 26.27 0.076 0.979 34.14 0.076 0.979 36.58
RobustNeRF [39] 0.013 0.988 37.73 0.063 0.957 26.31 0.006 0.995 41.82 0.018 0.990 38.95
Ours 0.023 0.989 39.83 0.035 0.982 27.00 0.016 0.993 39.50 0.039 0.986 38.41

Table A. Novel view synthesis results on the Kubric Dataset. The numbers for baseline methods are taken from [39].

Figure A. Sample Masking Results of Mip-NeRF 360 [1] + SAM. The predicted dynamic segments are highlighted in blue. Although
state-of-the-art methods for object detection and instant segmentation are used with known dynamic object categories, they still have
incorrect predictions, overlooked objects, or incomplete segmentation of objects.

BabyYoda
LPIPS# SSIM" PSNR"

RobustNeRF [39] 0.20 0.83 30.87
RobustNeRF⇤ [39] 0.31 0.81 29.19
Ours 0.24 0.83 29.96

Table B. Novel View Synthesis Results on the BabyYoda Scene
of RobustNeRF dataset. RobustNeRF⇤ [39] denotes our own run
using the official code release. Our method is superior compared
with RobustNeRF⇤ [39], although it does not quite achieve the
results reported in the RobustNeRF paper.

quite reach the performance levels reported in the original
RobustNeRF paper. We didn’t put this result in the main
paper because the distractors in this dataset varies across all
images, which doesn’t fit our setting.
On-the-go Dataset. Additional qualitative results of On-
the-go dataset are shown in Fig. B. Our method consis-
tently outperforms all baseline methods in various envi-
ronments. The performance of different baseline methods
closely aligns with the sequences depicted in the Table 6.
While NeRF-W [27] is capable of removing distractors, it
does so at the expense of detail loss. RobustNeRF [39],
due to its threshold-based nature, occasionally fails to pre-
serve thin structures. Furthermore, Mip-NeRF 360 + SAM
struggles due to the imperfect segmentation, as illustrated
in Fig. A.

B.2. Ablation Study

Loss Ablation. To evaluate the effectiveness of our loss
functions, we conduct a supplementary loss ablation on a
low occlusion scene (Tree) as presented in Table C. While

LPIPS# SSIM" PSNR"

(a) w/o Lreg 0.244 0.703 20.19
(b) `2 in Luncer 0.240 0.709 20.53
(c) Luncer for NeRF 0.354 0.601 18.84
Ours 0.226 0.718 20.68

Table C. Ablations on Loss Functions. We compare different loss
choices for training on the Tree sequence.

Table 4 in the main paper is evaluated on a high occlusion
sequence, Table C is evaluated on a low occlusion sequence.
We find that for both occlusion scenarios, each component
of our method contributes to the overall performance en-
hancement. Although in scenarios with relatively low oc-
clusion, the design choice (b) still can achieve satisfactory
quality except for certain views, the performance drop is
more pronounced in high occlusion scenarios. Furthermore,
in both occlusion scenarios, we observe that (c) Luncer for
NeRF exhibits a significant performance decline. This de-
cline can primarily be attributed to our SSIM formulation,
which is tailored more toward optimizing uncertainty rather
than scene representation.

Dilated Patch Ablation. We continue to test various di-
lation rates on a low occlusion scene Tree in Table F with
patch size fixed to be 32 ⇥ 32. We observe that the perfor-
mance closely resembles that of high occlusion scenes as
depicted in Table 3. Notably, unlike in high occlusion sit-
uations, a dilation rate of 8 is able to sustain performance
without collapsing. Nevertheless, to maintain consistency
in hyperparameter settings across all occlusion scenarios,
we set the dilation rate at 4.

Due to the space constraints in the main paper, the qual-
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NeRF-W [27] RobustNeRF [39] Mip-NeRF 360 + SAM Ours GT

Figure B. Additional Novel View Synthesis Results on Our On-the-go Dataset. For GT, we show captured test views that might contain
some dynamic objects due to restrictions of the capture environment.



1 2 4 (Ours) 8 16 GT

Figure C. Ablations on Dilation Rate with a Patch Size at 32⇥ 32. A dilation rate of 4 results in superior rendering quality.

LPIPS# SSIM" PSNR"

1 0.363 0.592 18.51
2 0.257 0.694 20.07
4 (Ours) 0.226 0.718 20.68
8 0.235 0.714 20.69
16 0.248 0.702 20.37

Table D. Ablations on Patch Dilation Rates on the Tree Scene.
Comparisons of various dilated rates for the dilation sampling,
with a patch size of 32⇥ 32.

LPIPS# SSIM" PSNR"

ResNet-50 0.480 0.444 16.16
DINOv1 0.237 0.720 21.36
DINOv2 (Ours) 0.235 0.718 21.41

Table E. Novel View Synthesis Results with Different Feature
Extraction Module.

itative results of Table 3 are shown in Fig. C. These qual-
itative results align with the trends observed in Table 3,
indicating that a lower uncertainty ratio (< 4) effectively
removes distractors but reduces the reconstruction quality,
whereas a higher dilation ratio (> 4) tends to reintroduce
the distractors due to the loss of local information.
Feature Extraction Module. In this paragraph, we change
the feature extractor module E to Resnet-50 [14] and DI-
NOv1 [4] as detailed in Table E. We find that there are neg-
ligible differences between DINOv1 and DINOv2. How-
ever, we observe that the Resnet-50 features are less effec-
tive in removing distractors. We attribute this difference to
the Resnet features’ emphasis on color information, in con-
trast to the DINO features that prioritize instance informa-
tion, essential for efficient distractor removal.

B.3. Analysis

Our SSIM Formulation. In this section, we will
show the mathematical proof that our method can im-
pose a larger uncertainty difference between distractors and

static backgrounds. To simplify notation, we denote the
L(P, P̂ ), C(P, P̂ ), S(P, P̂ ) in Eq. (7) as l, c, s.

Proof. Let l1, c1, s1 represent the luminance, contrast, and
structure similarity between the distractor patch and the
ground-truth patch. Similarly, l2, c2, s2 represent these sim-
ilarities for the distractor-free patch and ground truth patch.
Therefore, we have the following conditions:

0 < l1 < l2 < 1,

0 < c1 < c2 < 1,

0 < s1 < s2 < 1.

(12)

Our assumptions in Eq. (12) are directly grounded in
the properties proved in the original SSIM paper (Sec-
tion III.B). In such cases, the similarity between rendered
patches and ground truth would naturally decrease. Our
empirical results also support this validity: our modified
SSIM loss consistently outperforms the original one in var-
ious datasets.

To prove that our reformulation in Eq. (8) places greater
emphasis on the differences between dynamic and static el-
ements compared to Eq. (7), we need to demonstrate the
following inequality:

(1� l1)(1� c1)(1� s1)

(1� l2)(1� c2)(1� s2)
>

1� l1 · c1 · s1
1� l2 · c2 · s2

. (13)

The left-hand side of this equation of the ratio of our
SSIM formulation between distractors and static back-
grounds, and the right-hand side is the ratio of conventional
SSIM Loss. This can be equivalently expressed as:

(1� l1)(1� c1)(1� s1)

1� l1 · c1 · s1
>

(1� l2)(1� c2)(1� s2)

1� l2 · c2 · s2
.

(14)
Taking the natural logarithm of both sides, we get:



LPIPS# SSIM" PSNR"

Conventional SSIM 0.455 0.459 16.33
Ours 0.235 0.718 21.41

Table F. Novel View Synthesis Results on the Patio-High Scene
of On-the-go dataset.

ln

✓
(1� l1)(1� c1)(1� s1)

1� l1 · c1 · s1

◆
>

ln

✓
(1� l2)(1� c2)(1� s2)

1� l2 · c2 · s2

◆
.

(15)

We aim to prove that the function f(x, y, z) =

ln
⇣

(1�x)(1�y)(1�z)
1�xyz

⌘
is monotonically decreasing for 0 <

x, y, z < 1. Given the function’s symmetry across vari-
ables, it is sufficient to take the partial derivative with re-
spect to one variable, say x, and show that it is negative.
The partial derivative of f(x, y, z) with respect to x is given
by:

@f(x, y, z)

@x
= � 1

1� x
+

yz

1� xyz

=
yz � 1

(1� x)(1� xyz)
.

(16)

Given 0 < x, y, z < 1, both terms 1 � x and 1 � xyz

are positive. Since yz < 1 (as both y and z are less than
1), the numerator yz � 1 is negative. Therefore, the entire
expression for @f(x,y,z)

@x
is less than zero:

@f(x, y, z)

@x
< 0. (17)

This implies that f(x, y, z) is monotonically decreasing
with respect to x in the given domain. By the symmetry of
f , the same holds for y and z, completing the proof.

We compare the effectiveness of the conventional SSIM
formulation and our modified SSIM approach in the Patio-
High scene as shown in Table F. Our SSIM formulation can
successfully remove distractors while conventional SSIM
fails to do so.
Parameter-tuning Free. Here we show our method’s supe-
riority against RobustNeRF [39] that no explicit outlier ratio
assignment is required for training on scene Patio-High. As
shown in Fig. D, multiple experiments with different ratios
need to be run for RobustNeRF [39] to gain its best per-
formance. However, our method does not need any hyper-
parameter tuning and still archives much better results than
RobustNeRF [39].
Fast Convergence. In Fig. E, we show the conver-
gence curve comparison between RobustNeRF [39] and

Figure D. The Performance of RobustNeRF [39] under Differ-
ent Inlier Ratios Compared to Our Method.

Figure E. SSIM Evaluation Metrics across Training Iterations
under Different Occlusion Conditions.

Mip-NeRF360+SAM RobustNeRF Ours GT

Figure F. Failure cases.

our method under different occlusion conditions(Tree and
Patio-High), using SSIM metrics as the basis for compar-
ison. Our method demonstrates significantly faster con-
vergence — nearly one magnitude faster — and exhibits
markedly better performance after reaching convergence.
Failure Case. Similar to baseline methods, we also struggle
in regions with strong view-dependent effects, see Fig. F.
Moreover, inherited from the limitation of our base model
Mip-NeRF360, we also require sufficient training views.
Our performance will degrade significantly when the train-
ing views become sparse.
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