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7. Additional Results

We note that the all testing input portrait images shown in

our paper are sampled from Unsplash or Adobe Stock.

Comparison with benchmarks To supplement Fig. 4c, we

present additional visual comparison with benchmarks on

the real world data in Fig. 8, 9 and 10. To supplement

Fig. 4a and Fig. 4b, we show full benchmark comparison

on the light stage test dataset in Fig. 11, and on the natural

image test set in Fig. 12.

Ablation We present additional visual comparison among

our ablation models on the natural image test and light stage

test set in Fig. 14 and Fig. 15 respectively. The ablation

comparison on the real test set is shown in Fig. 13 as a sup-

plement to Fig. 6. In Fig. 16, we include additional visu-

alization of the feature norms to illustrate the affects of the

alignment module to supplement Fig. 7.

Real world testing results Fig. 17 shows reference based

harmonization example as in Fig. 5e. Fig. 18 shows harmo-

nization results when we flip the background image as in

Fig 5a. Fig. 19 shows the results under spatially and tempo-

rally changing lighting as in Fig. 5d.

8. Additional Implementation Details

8.1. Network Architecture

Lighting-conditioned diffusion is built on the Instruct-

Pix2Pix [3] backbone. The core rationale for selecting

the pretrained InstructPix2Pix model [3] as the foundation,

rather than the stable diffusion model, is on its capability to

incorporate an additional input image channel. Therefore,

at the beginning of our training, the input and output image

will be identital (i.e., no editing on the input image), and

it will gradually incorporate the lighting conditioning from

the extra lighting representation. We use a dummy editing

prompt ‘portrait’ during our training and inference.

The lighting conditioning branch architecture follows

ControlNet [73], where an encoder structure identical to the

diffusion UNet backbone is applied and the intermediate

feature maps are added to the UNet encoder at respective

resolutions. The lighting representation is extracted from a

4-layer CNN. We train our model with the input resolution

of 512× 512 (for both input image and the background im-

age), and the lighting representation is a tensor with shape

64 × 64 × 320. We empirically found that training with

a higher resolution (e.g., 768 × 768) led to better identity

preservation, but performed worse in terms of the relight-

ing. We speculate that this is related to the stable diffusion

pretraining, which is on 512× 512 resolution.

The Alignment Network is an encoder-decoder architec-

ture built with Residual blocks. The encoder is composed

of three sequential residual blocks. Each of these blocks is

coupled with a subsequent downsampling layer. The de-

coder is symmetrical to the encoder, with three residual

blocks, and each of them followed by an upsampling layer.

The input and output dimensions of the alignment network

are consistent, maintaining a shape of 64× 64× 320.

Ablation Models Specifics Model#0 is a baseline dif-

fusion model without lighting conditioning and its imple-

mentation follows InstructPix2Pix [3] with the text prompt

fixed as ‘Portrait’. Model#1 takes the background image

as the conditional input, which is resized to 512 × 512.

Model#2 shares the same architecture as Model#1 but re-

places the conditional input to the LDR environment map.

Model#3 introduces the alignment module after the con-

ditional branch from Model#1. The Unet backbone from

Model#2 is used as diagramed in Fig. 2. Model#4 fine-

tunes on Model#3 with the synthetic data.

8.2. Transformer relighting model

To train a relighting baseline on our light stage dataset, we

built a transformer based encoder-decoder network. The

network input is a concatenated input image, foreground

mask, and the parsing mask, which is divided into patches

of 4 × 4. A hierarchical Transformer encoder is applied to

obtain multi-level features at { 1

4
,

1

8
,

1

16
,

1

32
} of the original

resolution. A decoder with transpose convolution is then

followed to get the final result with the same resolution as

the input. The target LDR environment map is concatenated

at the bottleneck latent space in a similar manner as [55].

9. Failure case and analysis

We illustrate several example failure cases in Fig.20. In our

training approach, since we do not impose constraints on

the subject’s identity, there are instances where the model

struggles to retain identity-specific details. For instance, as

shown in Fig.20a, the color of the subject’s clothing is in-

accurately altered during the color harmonization process.

Similarly, in Fig. 20b, there is a notable change in hair color

(middle). Furthermore, in scenarios where the input skin

tone is not clearly indicated (right), our model occasion-

ally produces ambiguous results in skin tone modification.

Additionally, our method does not incorporate intermediate

steps like albedo estimation, which can be crucial in han-

dling complex lighting conditions. As a result, in inputs

with pronounced cast shadows, our model sometimes fails

to eliminate these shadows effectively.



Composite Harmonizer PIH PCT INR Ours

Figure 8. Example comparison results on the real world test set to supplement Fig. 4c in the main paper.
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Figure 9. Example comparison results on the real world test set to supplement Fig. 4c in the main paper.
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Figure 10. Example comparison results on the real world test set to supplement Fig. 4c in the main paper.
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Figure 11. Example comparison results on the light stage test set to supplement Fig. 4a in the main paper. The environment map is shown

at the bottom of the ground truth image.



Composite Harmonizer PIH PCT INR Ours Ground Truth

Figure 12. Example comparison results on the natural image test set to supplement Fig. 4b in the main paper.
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Figure 13. Example testing results from our ablation on the real image test set. Model 0 to Model 4 correspond to the configurations in

Table 3. Our final model (Model 4) presents the best visual quality while maintaining plausible lighting effects.
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Figure 14. Example testing results from our ablation on the natural image test set. Model 0 to Model 4 correspond to the configurations in

Table 3. Our final model (Model 4) presents the best visual quality while maintaining plausible lighting effects.
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Figure 15. Example testing results from our ablation on the light stage test set. Model 0 to Model 4 correspond to the configurations in

Table 3. Our final model (Model 4) presents the best visual quality while maintaining plausible lighting effects.



Bg Env ∥fbg∥2 ∥fenv∥2 ∥fbg→env∥2 Bg Env ∥fbg∥2 ∥fenv∥2 ∥fbg→env∥2

Figure 16. The L2 norm of learned lighting representations to supplement Fig. 7. The aligned background-derived feature on the right

matches the panorama much closer, indicating a better lighting representation.



Figure 17. Visual results on the reference-based harmonization application to supplement Fig. 5e. It allows user images to be blended into

scenes from real portraits. This involves removing the subject from the reference image (upper left) to create a background (lower left) for

composition. The harmonized results (right) achieve lighting effects closely resembling those in the reference.



Figure 18. Harmonization results when flipping the background, to supplement Fig. 5a.



(a) We create spatially changing lighting conditions by cropping background images (top) from a panoramic image. Our model produces visually

coherent lighting changes on different portrait images.

(b) We obtain temporally changing lighting conditions by taking multiple screenshots (top) from a timelapse video (https://www.youtube.com/

watch?v=CSfri4U9w28). Our model produces visually reasonable harmonization results.

Figure 19. Harmonization results under the background images where lighting conditions are changing spatially (a) or temporally (b).

https://www.youtube.com/watch?v=CSfri4U9w28
https://www.youtube.com/watch?v=CSfri4U9w28


(a) In some examples, our model modified the color of the subject clothes due to its harmonization nature.

(b) In some examples, our model may not fully preserve the subject identity, such as the hair color and the skin tone, especially when the input skin

tone is ambiguous (right two examples).

(c) In portraits with strong casted shadows, our model may fail to completely remove them.

Figure 20. Failure cases
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