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1. Complete Definition of Diffusion
This section gives a brief and complete definition of diffu-
sion process [1] as a complement to Sec.3.1 of our main
paper.

Forward Diffusion Process. Given a data point X0

sampled from data distribution q(X), the diffusion pro-
cess will gradually add gaussian noise with small scale
to the X0 in T steps. Controlled by a variance schedule
{βt ∈ (0, 1)}Tt=1, we can get a sequence of noisy samples
{Xt}Tt=1.

q(Xt|Xt−1) = N (Xt;
√
1− βtXt−1, βtI) (1)

q(X1:T |X0) =

T∏
t=1

q(Xt|Xt−1) (2)

Using the reparameterization technique and supposing
that αt = 1− βt, ᾱt =

∏t
i=1 αi and ϵ ∼ N (0, I):

Xt =
√
αtXt−1 +

√
1− αtϵ

=
√
αtαt−1Xt−2 +

√
1− αtαt−1ϵ

= ...

=
√
ᾱtX0 +

√
1− ᾱtϵ.

(3)

A nice property we can find here is that we can sample Xt

with one step from X0.
Reverse Diffusion of Process. We learn a model pθ to ap-

proximate the conditional probability for reverse diffusion
process.

pθ(X0:T ) = p(XT )

T∏
t=1

pθ(Xt−1|Xt) (4)

pθ(Xt−1|Xt) = N (Xt−1;µθ(Xt), t),Σθ(Xt, t)) (5)

The reverse condition probability will be tractable when
adding a new condition X0:

q(Xt−1|Xt,X0) = N (Xt−1; µ̃(Xt,X0), β̃tI). (6)

Using Bayes’ rule, we can get the following:

q(Xt−1|Xt,X0) = q(Xt|Xt−1,X0)
q(Xt−1|X0)

q(Xt|X0)

∝ e
− 1

2 (
(Xt−

√
αtXt−1)2

βt
+

(Xt−1−
√

ᾱt−1X0)2

1−ᾱt−1
− (Xt−

√
ᾱtX0)2

1−ᾱt
)

= e
− 1

2

(
(
αt
βt

+ 1
1−ᾱt−1

)X2
t−1−(

2
√

αt
βt

Xt+
2
√

ᾱt−1
1−ᾱt−1

X0)Xt−1+C
)
.

(7)

According to Eq. 7, the mean and variance can be parame-
terized as follows:

β̃t =
1− ᾱt−1

1− ᾱt
βt (8)

µ̃t(Xt,X0) =

√
αt(1− ᾱt−1)

1− ᾱt
Xt +

√
ᾱt−1βt

1− ᾱt
X0

=
1

√
αt

(Xt −
1− αt√
1− ᾱt

ϵt).

(9)

Following VAE [2], we could apply the variational lower
bound to optimize the negative log-likelihood:

− log pθ(X0) ≤ Eq[log
q(X1:T |X0)

pθ(X0:T )
] = LV LB . (10)

Based on Eq. 10, we can approximate this and get the train-
ing objective:

LV LB ≈ Lt = EX0,ϵt [
1

2 ∥Σθ∥22
∥µ̃t − µθ∥2]

≈ EX0,ϵt [
∥∥ϵt − ϵθ(

√
ᾱtX0 +

√
1− ᾱtϵt, t)

∥∥2].
(11)

2. Linear Representation of Relative Position
We will show that our proposed position encoding method
Phase Shift Position Encoding (PSPE) can possess the prop-
erty of linear representation of relative position.
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Given two 3D positions posn and posm = posn + δ, we
can formulate them following Eq. 7 of the main paper:

Pn
emb(pos

n
j , 6i+2∗ (j−1)) = sin(

posnj

10000
2i
D

+(j−1)
2π

3
)

(12)

Pn
emb(pos

n
j , 6i+1+2∗(j−1)) = cos(

posnj

10000
2i
D

+(j−1)
2π

3
)

(13)

Pm
emb(pos

m
j , 6i+2∗ (j−1)) = sin(

posmj

10000
2i
D

+(j−1)
2π

3
)

(14)

Pm
emb(pos

m
j , 6i+1+2∗(j−1)) = cos(

posmj

10000
2i
D

+(j−1)
2π

3
),

(15)
where where posj is j-th element in each point’s position,
specifically pos1 = x, pos2 = y, pos3 = z, and i is the
dimension.

We plug posm = posn + δ into Eq. 14 and Eq. 15:

Pm
emb(pos

m
j , 6i+ 2 ∗ (j − 1))

= sin(
posnj + δ

10000
2i
D

+ (j − 1)
2π

3
)

= sin(
posnj

10000
2i
D

+ (j − 1)
2π

3
) cos(

δ

10000
2i
D

)

+ cos(
posnj

10000
2i
D

+ (j − 1)
2π

3
) sin(

δ

10000
2i
D

)

= Pn
emb,2i cos(

δ

10000
2i
D

) +Pn
emb,2i+1 sin(

δ

10000
2i
D

)

(16)

Pm
emb(pos

m
j , 6i+ 1 + 2 ∗ (j − 1))

= cos(
posnj + δ

10000
2i
D

+ (j − 1)
2π

3
)

= cos(
posnj

10000
2i
D

+ (j − 1)
2π

3
) cos(

δ

10000
2i
D

)

− sin(
posnj

10000
2i
D

+ (j − 1)
2π

3
) sin(

δ

10000
2i
D

)

= Pn
emb,2i+1 cos(

δ

10000
2i
D

)−Pn
emb,2i sin(

δ

10000
2i
D

),

(17)

where sin( δ

10000
2i
D
) and cos( δ

10000
2i
D
) are constant for each

ith channel, which shows that our PSPE can linearly repre-
sent the relative position. According to [4], this property
will make it easier for models to learn the position repre-
sentation.

3. Implementation Details
Hyper-parameters. We mainly follow the setting in [5]: We
set the learning rate 2e − 4 and the batch-size 16; The
timestep in the diffusion process is 1, 000 and we use the

Figure 1. Overview of our latent point Transformer.

linear schedule to gradually increase the β from 1e − 4 to
0.002; The number of the points N in Xt is 2, 048 and the
number of the points M in downsampled X̂t is 256; The di-
mension d of the latent point cloud is 256 and the dimension
D of the tokens is 512; We add dropout layer with proba-
bility 0.1 to the last layer of our TIGER model.

Architecture of Latent Point Cloud Transformer. As
shown in Fig. 1, we first transform the latent point cloud
into tokens, added by our proposed position embedding
(PSPE/BλPE). Then we will perform N times global fea-
ture extraction by Transformer blocks, which replace the
standard self-attention module with our position-aware self-
attention module. Following [3], we also add time-shift and
time-scale operations to fuse the timestep condition. Over-
all, we aim to retain the standard Transformer architecture
and highlight the effectiveness of the proposed position en-
coding methods and position-aware self-attention module.

Computation of ConvNet Importance. This section gives
the mathematical explanation for the description in line 787
of the main paper. As discussed in Eq.17 and Eq.18 of the
main paper, we have two time-masks Mc, Mtr ∈ RD for
CNN and Transformer respectively. For each timestep, the
importance of ConvNet can be computed by counting how
many elements in Mc is larger than that in Mtr:

ConvNet Importance =
sum[Mc > Mtr]

D
, (18)

where sum[·] is the function: RD → R1 and the impor-
tance of the ConvNet ranges from 0 to 1. Accordingly, since
Mtr = 1−Mc, the reduction of the ConvNet’s importance
implies the improvement of the Transformer’s importance.



(a) EMD-based 1-NN accuracy across training epochs.

(b) CD-based 1-NN accuracy across training epochs.

Figure 2. We show EMD-based 1-NN accuracy and CD-based 1-NN accuracy over training iterations for 16 of our TIGER models. For
each figure, we hold the number of blocks in the encoder and decoder while scaling the depth of the Transformer.

4. Ablation on Scalability

Fig. 2 shows our TIGER model’s mean accuracy under 16
different scales: (Small/Base/Large/X-Large) / (2-blocks/3-
blocks/4-blocks/5-blocks both in Encoder and Decoder),
where S/B/L/X is used to describe the depth (number of
blocks) in Transformer. As we increase the depth in Trans-
former, the model will gain some improvement in EMD-
based 1-NN accuracy and CD-based 1-NN accuracy while
L model only reaches similar results as XL model. If we
fix the the depth in Transformer and only scale the number
of blocks in the encoder and decoder, we find that the per-
formance will increase from 2 to 4 but stop growing from
4 to 5. These results show that there are some bottlenecks
in our model. Simply scaling the number of blocks either
in Transformer or encoder and decoder will not boost the
performance.

5. Distance Map Visualization

As shown in Fig. 3, the 1-nearest-neighbor of generated
samples is half in the generation set and half in the reference
set, and it is the same with the reference samples, which
means the generated samples are so similar to the reference
set that it is hard to distinguish them. It is worth mentioning
that Fig. 3g shows the 1-nearest-neighbor of reference sam-
ples is less in the generation set, which is corresponding to

our slightly worse performance in CD-based accuracy.

6. More Visualization Results
Fig. 4, 5, 6 show the airplane, chair, and car objects from
different angles. Fig. 7 shows more generated samples from
the unified model under the 55-class setting.
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(a) Gen-Gen (EMD). (b) Gen-Ref (EMD).

(c) Ref-Gen (EMD). (d) Ref-Ref (EMD).

(e) Gen-Gen (CD). (f) Gen-Ref (CD).

(g) Ref-Gen (CD). (h) Ref-Ref (CD).

Figure 3. Visualization of distance maps. Y-axis shows the index of query point clouds and X-axis shows the index of key point clouds.
The white dot(x,y) means the y’s 1-nearest-neighbor is x. [Key: Gen=Generated samples; Ref=Reference samples.]



Figure 4. Airplane shape from different angles. All shapes are from just one point cloud.



Figure 5. Chair shape from different angles. All shapes are from just one point cloud.



Figure 6. Car shape from different angles. All shapes are from just one point cloud.



Figure 7. Visualization of our 55-class model.


