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A. Task Coverage in TimelT

TimelT encompasses 6 longstanding timestamp-related
video tasks and incorporates 12 specific datasets derived
from different domains.

Dense Video Captioning (DVC). This task unifies the
event localization and event captioning subtasks. It detects
a series of events in the given video and outputs the corre-
sponding timestamps and descriptions. We gather Activi-
tyNet Captions [8], ViTT [7], and YouCook?2 [25] datasets
to facilitate the narration of significant events for users when
watching long videos.

Temporal Video Grounding (TVG). This task aims to
predict a timestamp boundary including the start and end
time in the video given a natural language query. We in-
clude DiDeMo [6], QuerYD [13], HiREST g,ounding [231,
and Charades-STA [3] datasets to achieve accurate moment
localization when users interact with natural language.

Step Localization and Captioning (SLC). This task is
designed to automatically segment and describe significant
steps in a long untrimmed video, which is useful for in-
structional videos. We incorporate two datasets including
COIN [19] and HiREST;., to fulfill key steps detecting
when processing noisy instructional videos under the cook-
ing, repairing, or assembling furniture scenarios.

Video Summarization (VS). The goal is to create a com-
pressed set of frames or clip shots to represent the most
informative content of the given video. TVSum [18] and
SumMe [5] datasets are compiled to achieve an efficient
video overview for busy stakeholders to save time.

“Equal contribution

Video Highlight Detection (VHD). Different from the
video summarization, it identifies the most exciting, impres-
sive, or emotional moments that may not cover the full scope
of the original video. QVHighlights [9] dataset is utilized
to evaluate the highlight moment recommendation ability of
Al assistants.

Transcribed Speech Generation (TSG). The objective
of this task is to predict the speech content and its cor-
responding start and end timestamps based on visual sig-
nals in the video. This task can be regarded as a weakly-
supervised event localization and description task. We use
the YT-Temporal-1B dataset [24]. The original dataset in-
cludes 18 million narrated videos collected from YouTube,
while we sample 31.6K videos from it for instruction
tuning. Following Vid2Seq [21], we leverage Whisper-
timestamped [12, 16] to automatically transcribe speech and
use it as the target answer.

Our dataset accommodates prevalent user requests involv-
ing video timestamps when interacting with Al assistants in
real-world applications.

B. Instructions for Each Task

The quality and diversity of instructions are essential in
the construction process. We manually write well-designed
instructions for each task as a good starting. Then we utilize
GPT-4 [15] to extend more diverse and flexible expressions
based on the manual initialization. Eventually, we manually
select and refine the LLM-generated instructions to obtain
the final version. Inspired by the observation in M?IT [11]
that using around five instructions per task is sufficient, we
generate six high-quality instructions for each task. Tab. |
shows instruction template examples and formatted output
answers for each task.
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Instruction Example

Output Format
Output Example

Dense Video Captioning
Localize a series of activity events in the video, output the start and end timestamp for each event, and
describe each event with sentences.
<timestamp_start> - <timestamp_end> seconds, <event description> . - - -
90 - 102 seconds, spread margarine on two slices of white bread in the video. 114.0 - 127.0 seconds, place a
slice of cheese on the bread. - - -

Instruction Example

Output Format
Output Example

Temporal Video Grounding
Detect and report the start and end timestamps of the video segment that semantically matches the given
textual query <query_placeholder> .
The given query happens in <timestamp_start> - <timestamp_end> seconds.
The given query happens in 0.0 - 6.9 seconds.

Instruction Example

Output Format
Output Example

Step Localization and Captioning
Identify and mark the video segments corresponding to a series of actions or steps, specifying the timestamps
and describing the steps.
<timestamp_start> - <timestamp_end> seconds, <step_description> . - - -
21.0 - 22.0 seconds, begin to run up. 23.0 - 24.0 seconds, begin to jump up. 25.0 - 26.0 seconds, fall to the
ground.

Instruction Example

Output Format

Output Example

Video Summarization
Generate a summarized version of the video, focusing on extracting key frames that best represent the overall
narrative. The output should be a list of timestamps in seconds and their corresponding salient scores.

The key timestamps are in the <timestamp_1>, <timestamp_2> , - - - seconds, Their saliency scores are

<score_1>, <score_2>,---.
The key timestamps are in the 8.5, 10.0, 11.0, 12.0, 23.5, 44.5, 45.0 seconds. Their saliency scores are 1.8,
3.7,45,42,2.1,4.7,4.2.

Instruction Example
Output Format

Output Example

Video Highlight Detection
Watch the provided video and mark out the scenes that stand out based on the description:
<query_placeholder> . Document the timestamps of these highlights and evaluate their saliency scores.

There are <highlight moments_number> highlight moments in the <timestamp_1>, <timestamp_2>,
- seconds, Their saliency scores are <score_1>, <score_2>,:--.
There are 16 highlight moments in the 44.0, 46.0, 48.0, 50.0, 52.0, 54.0, 56.0, 58.0, 60.0, 62.0, 64.0, 66.0,

68.0, 70.0, 72.0, 74.0 second. Their saliency scores are 2.7, 4.0, 3.7, 3.3, 2.7, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0,
2.7,3.0, 3.0, 3.0.

Instruction Example
Output Format
Output Example

Transcribed Speech Generation
Watch the video, transcribe the speech, and indicate when each segment starts and ends.
Transcribed speech: <timestamp_start> - <timestamp_end> seconds, <transcribed_ speech> . - - -
Transcribed speech: 4.0 - 9.3 seconds, Dolby as well as we had over 7.7 million minutes viewed. This week
we visit restaurant. 9.3 - 15.4 seconds, August by Chef John Besh in New Orleans 2015. Restaurant August
is currently regarded as New. - - -

Table 1. Instruction template examples and formatted output answer for each task.

C. Contribution Analysis of Each Task to Model
Performance

We examine the impact of individual tasks within the TimelT
dataset on model performance. Initially, we construct the
TimelT dataset with only DVC and TVG tasks, then gradu-
ally integrating additional tasks such as SLC, VS, and TSG,
to assess their influence on model performance. As shown in
Tab. 2, introducing similar tasks (e.g., SLC to DVC) yields

a positive impact (e.g., increasing F1 score on YouCook?2
from 5.9 to 12.1). Overall, all 6 tasks are beneficial.

D. Hyper-parameters for Instruction Tuning

Tab. 3 lists hyper-parameters for instruction tuning. We also
conduct an ablation on sliding window hyper-parameters.
The results are on Tab. 4. We adopt a window
size=stride=32 for efficiency (higher compression rate [17]



Dense Captioning Highlight Detection | Temporal Grounding
Tasks in TimelT YouCook2 QVHighlights Charades-STA
SODA_c CIDEr FI | mAP HIT@] R@luvos  R@Iluowon)
DVC+TVG 0.6 1.9 59 11.2 15.5 34.9 13.6
DVC+TVG+SLC 1.1 32 12.1 11.8 16.5 32.7 13.9
DVC+TVG+SLC+VS 1.1 3.0 12.2 13.0 19.0 332 14.3
DVC+TVG+SLC+VS+TSG 1.2 34 12.6 145 239 32.2 13.4

Table 2. Contributions ( positive / negative ) of tasks in TimelT to model performance. The tasks include Dense Video Captioning (DVC),
Temporal Video Grounding (TVG), Step Localization and Captioning (SLC), Video Summarization (VS), and Transcribed Speech Generation

(TSG).

Hyper-parameter Value
Patch size 14 x 14
Frame resolution 224 x 224
Fine-tuning epochs 3
Batch size 32
Learning rate 3e-5
Warm-up learning rate le-6
Weight decay 0.05
AdamW g (0.9, 0.999)
Window size Ly 32
Stride S 32
Number of video tokens per window Ny 32
Number of input frames 7' 96
Max text length 2048
Number of layers in video Q-Former 2
Number of layers in image Q-Former 12
Hidden size of image/video Q-Former (Dg) 768
Hidden size of LLaMA-2 (Dpr,ar) 4096

Table 3. Hyper-parameters for instruction tuning.

and fewer video tokens). However, a more thorough search
may improve performance (window size=stride=16). Be-
sides, non-overlapping windows outperform overlapping
ones.

E. Details of Evaluation Datasets and Metrics

TimelT’s 6 tasks can be grouped based on format simi-
larity: (1) dense-captioning-formatted: DVC, SLC, and
TSG; (2) highlight-detection-formatted: HD and VS; (3)
temporal-grounding-formatted: TVG. For practicality and
representation, we select the most relevant tasks from each
group—DVC, HD, and TVG—for evaluation.

(1) For dense video captioning, we use the YouCook2
dataset [25], which has 1,790 untrimmed videos of cooking
procedures. On average, each video lasts 320s and is an-
notated with 7.7 temporally-localized imperative sentences.

The dataset is split into 1,333 videos for training and 457
videos for validation. We evaluate caption quality using
CIDETr [20]. For an overall evaluation at the story level, we
use the SODA_c metric [2]. We also report the F1 score,
which is the harmonic mean of the average precision and
recall across IoU thresholds of 0.3, 0.5, 0.7, 0.9, to measure
event localization performance.

(2) For video highlight detection, we use the QVHigh-
lights dataset [9]. It consists of over 10,000 videos annotated
with human-written text queries. The evaluation metrics are
mAP (mean average precision) with IoU thresholds of 0.5
and 0.75, and HIT@1 (the hit ratio of the highest-scored
clip).

(3) For temporal video grounding, we use the Charades-
STA [3] dataset. The dataset contains 6,670 videos and
involves 16124 queries, where 12,404 pairs are used for
training and 3,720 for testing. The average duration of the
videos is 30.59 seconds and each video contains 2.41 an-
notated moments, and the moment has an average duration
of 8.09 seconds. The evaluation metric is "R@1, IoU = p",
which denotes the percentage of retrieved moments with an
intersection over union (IoU) greater than p compared to the
ground truth, given language queries.

F. Details of Multi-model Pipelines

We take  VideoChat-Text [10] and  Instruct-
BLIP [1]+ChatGPT [14] as the baselines of Multi-model
Pipielines. These pipelines integrate specialized visual
models with ChatGPT, which firstly convert video semantics
into textual descriptions and then leverage ChatGPT to
process all inputs to solve the target task.

VideoChat-Text utilizes f fmpeg to extract key frames
from the video at FPS=1. Then it leverages visual tools to
obtain rich video information including action labels, frame
summaries, video tags, comprehensive descriptions, object
positional coordinates, video narratives, timestamps, and
segment-related details. The overall visual information will



window size stride window overlap #video tokens ‘ SODA_c¢ CIDEr FI Score
32 32 X 96 ‘ 29 9.6 19.0
32 16 v 192 2.9 10.0 19.6
16 16 X 192 3.2 11.7 19.8
16 8 v 384 3.1 10.8 19.5
8 8 X 384 3.1 11.2 19.7

Table 4. Sliding window hyper-parameters sweep on YouCook?2.

You are an Al visual assistant, and you are seeing successive frames from the same video to tackle a task called Dense Video Captioning. The
task goal is to locate a series of activity events and describe them with a sentence based on the video frames. I will give you descriptions of
all extracted frames with their timestamps. You can get and understand the video context based on the given detailed visual descriptions.
The task output should be in a tone that a visual Al assistant is seeing the video and is time-sensitive.

Guidelines:

+ In the context of dense video captioning, an "event" can be defined as a specific activity or series of related activities having similar
semantics within the video. Dense video captioning would aim to integrate frames with similar semantics/actions to an event and
provide the description. It is important to focus on the change of human actions, related objects and environment/background in the
given video descriptions to perceive the temporal semantics and recognize the successive events.

Note that the frame descriptions are from a visual captioning model and may have tiny errors like describing misidentified objects, you
can modify and fix the misidentified content reasoning from the successive and global video semantics.

Examples:

Task Input

«  Frame at 5.7 second shows a man wearing a chef's hat is preparing food in a kitchen. He is standing in front of a stove, holding a knife
and cutting ingredients for a sandwich. There are various kitchen appliances visible in the scene, including an oven, a microwave, and a
refrigerator. The kitchen appears to be well-equipped for cooking and preparing meals.

« Frame at 17.0 second shows ......

Task Output

12.0 - 23.0 seconds, add carrots radishes sugar salt to a vinegar to a bowl. 26.0 - 34.0 seconds, mix fish sauce oil and soy sauce in a bowl.
35.0 - 41.0 seconds, pour the sauce over the bread. 43.0 - 47.0 seconds, spread mayonnaise on the bread. 49.0 - 72.0 seconds, place lettuce
onions chicken jalapenos basil on top of the bread. 77.0 - 84.0 seconds, add vegetable mixture on top of the sandwich".

New Inputs:

Now I need your help to handle the following video:
Frame at 1 second shows A woman in a kitchen waving at the camera with a smile. She is wearing an orange top and a black apron with
the words “Titli’ s Busy Kitchen” on it. Behind her, there are wooden cabinets, a tiled backsplash, and a microwave oven on the wall.
On the counter, there are various cooking utensils, such as a knife, a cutting board, a bowl, and a spatula.

Based on the above time-sensitive frame descriptions, please solve the dense video captioning task and output a series of events following
the above example format: “"start - end seconds, occurred event description”.

Figure 1. Examples of designed prompts for the InstructBLIP+ChatGPT pipeline. The input prompts encompass (1) the task definition, (2)
specific guidelines, (3) an in-context example, and (4) the new instance input. The video information includes detailed frame descriptions
from InstrucBLIP with the corresponding timestamp. We uniformly sample 50 frames for each video to obtain visual semantics.

be processed by the ChatGPT to respond to user instructions. G. Generalized to New Domains
We design task-related prompts to endow VideoChat-Text

with the capability to solve timestamp-sensitive tasks.

In Fig. 2, we show qualitative results in new domains such

InstructBLIP+ChatGPT endows a more powerful visual
expert model, i.e. InstructBLIP, to describe each frame with

exhaustive paragraphs containing detailed video semantics.

We employ well-designed prompts (illustrated in Fig. 1) for
ChatGPT to solve each task. For video input, we uniformly
sample 50 frames to obtain frame descriptions.

as movie [22] and egocentric videos [4], demonstrating the
generalization of TimeChat to novel scenarios. This gen-
eralization is a key characteristic towards a practical video
assistant and represents a fundamental difference between
LLM-based TimeChat and the current specialized models
tailored for specific downstream datasets.
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[ ] This is a video from a movie. From what second to what second does a

person stares at a clown puppet in the glass cabinet?
User

The person stares at the clown puppet in the glass cabinet from 225.6 - 231.6

seconds.
TimeChat

[ ] This is an egocentric video, where a person performs a series of activities.
L) Now imagine you are the person wearing the camera. Describe your
User activities step by step based on the video content. Please provide a

starting timestamp and ending timestamp for each activity.

0.0 - 11.7 seconds, A person wearing a camera is sitting down.

12.0 - 34.8 seconds, The person pulls a basket of clothes out of a washing
machine.

35.8 - 57.7 seconds, They put the basket back in the machine.

58.0 - 92.5 seconds, The person uses the washer and dryer for a quick wash.
93.1 - 109.5 seconds, They use a laundry detergent.

110.2 - 125.9 seconds, The person puts the laundry in the dryer and closes the
door.

TimeChat

Figure 2. Zero-shot transfer to new domains such as movie (upper)
and egocentric videos (bottom).

H. More Qualitative Results

Within Figures 3-5, we present an extended range of qual-
itative results, encompassing dense video captioning, tem-
poral video grounding, and video highlight detection tasks.
Overall, our model demonstrates proficiency in executing a
diverse array of intricate temporal localization tasks.
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Video:

User steps. For each step, determine the starting and ending times and
provide a concise description. The format should be: 'start time - end
time, brief step description’'.

12.0 - 24.0 seconds, mix flour cornstarch and milk together.
32.0- 44.0 seconds, beat an egg and mix it in.

45.0 - 53.0 seconds, chop an onion.

72.0 - 88.0 seconds, coat the onion rings in the mixture.
89.0 - 110.0 seconds, fry the onion rings in a pan with oil.
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TimeChat

Video:
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[ ] You are given a cooking video from the YouCook?2 dataset. Please [ ] Localize a series of activity events in the video, output the start and
[ watch the video and extract a maximum of 10 significant cooking - end timestamp for each event, and describe each event with

sentences. The output format of each predicted event should be
like: start - end seconds, event description.

5.0 - 28.0 seconds, cook the rice in a pot.

86.0 - 105.0 seconds, cut up the chicken breast.

106.0 - 119.0 seconds, add salt to the chicken.

121.0- 141.0 seconds, add oil to a pan.

153.0- 165.0 seconds, add chopped onions to the pan.
175.0 - 184.0 seconds, add chopped carrots to the pan.
187.0- 196.0 seconds, add chopped garlic to the pan.
199.0 - 213.0 seconds, add the chicken to the pan.
214.0- 220.0 seconds, add cumin powder to the pan.
233.0- 252.0 seconds, add green onions to the pan.
253.0- 261.0 seconds, add pepper to the pan.

262.0- 276.0 seconds, stir fry the ingredients in the pan.
295.0 - 310.0 seconds, add cooked rice to the pan.

TimeChat

10s 30s 96s 124s 152s 180s

Capture and describe the activity events in the given video,
specifying their respective time intervals, and outputting the time
intervals in the 'start - end seconds format'.

0.0- 60.0 seconds, a woman is seen turning the handle on a bicycle
seat and pushing and pulling on the seat.

60.0 - 95.0 seconds, she then pans around the bike while pushing up
and down.

95.0 - 123.0 seconds, she then turns the handle pushing it around and
pans around the bike again.

123.0- 155.0 seconds, she then points up and down to the seat while
pushing the handle and panning around the bike.

155.0 - 183.0 seconds, she pans around the bike while pushing up and
down the seat.

TimeChat

Video: |

[ ] Determine the start and end times of various activity events in the
- video, accompanied by descriptions.

11.0- 20.0 seconds, a group of people are swimming down a lane in a
pool.

21.0- 30.0 seconds, one person does the back stroke.

35.0 - 43.0 seconds, one person swims in the other lane in the breast
stroke.

TimeChat

Figure 3. Qualitative results on video dense captioning task. For each video, we ask TimeChat to detect a series of events in the given video

and output the corresponding timestamps and descriptions.
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Video:

Video:

[ ] Give you a textual query: 'person pouring it into a glass' When does
[ the described content occur in the video? Please return the
User timestamp in seconds.

The given query happens in 4.3 — 17.4 seconds.

Find the video segment that corresponds to the given textual query
'person start playing on their phone' and determine its start and end
seconds.

The given query happens in 23.0 — 30.0 seconds.

TimeChat

[ ] Find the video segment that corresponds to the given textual query
[ 'person they are on their laptop eating a sandwich' and determine
User its start and end seconds.

The given query happens in 0.0 - 10.3 seconds.

Localize the visual content described by the given textual query 'the
person debating on tidying up or reading a book' in the video, and
output the start and end timestamps in seconds.

The given query happens in 23.7 - 37.0 seconds.

TimeChat

Video:

Give you a textual query: 'a person enters the front door holding a
bag' When does the described content occur in the video? Please
return the timestamp in seconds.

The given query happens in 4.4 — 13.1 seconds.

o Detect and report the start and end timestamps of the video segment
[ that semantically matches the given textual query 'person eating a
User sandwich'.

The given query happens in 18.4 - 31.0 seconds.

TimeChat

[ ) Localize the visual content described by the given textual query 'a
[ person opens a book in the bathroom' in the video, and output the
User start and end timestamps in seconds.

The given query happens in 0.0 — 5.2 seconds.

Localize the visual content described by the given textual query 'person
closes the book' in the video, and output the start and end timestamps in
User seconds.

The given query happens in 17.0 — 21.2 seconds.

TimeChat

Figure 4. Qualitative results for temporal video grounding task. For each video, we prompt our model to estimate the starting and ending
timestamps for two specified queries (highlighted in bold). The predicted start and end timestamps and their corresponding segments are

displayed in green and red, respectively.
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[ ] Go through the video content, and upon identifying highlight [ ] Go through the video content, and upon identifying highlight
moments that resonate with 'Food is in tupperware and on plates.', moments that resonate with 'Little girl rides in the car with her

User list their timestamps. Subsequently, provide a saliency score for each User mother', list their timestamps. Subsequently, provide a saliency
identified highlight. score for each identified highlight.

i@ There are 13 highlight moments in the 64.0, 66.0, 68.0, 70.0, 72.0, ()  There are 11 highlight moments in the 44.0, 46.0, 48.0, 50.0, 52.0,

Timechat  74-0, 76.0, 78.0, 80.0, 82.0, 84.0, 86.0, 88.0 second. Timechat  54.0, 56.0, 58.0, 60.0, 62.0, 64.0 second.

Their saliency scores are 1.3, 1.7, 1.7, 2.0, 2.0, 2.0, 2.3, 2.3, 3.0, 3.3, Their saliency scores are 1.7, 1.7, 2.3, 2.0, 3.0, 3.3, 2.3, 2.3, 2.3, 2.7,
3.3,3.3,3.3. 2.3.
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[ ] You are given a video from the QVHighlights dataset. Please find the [ ] Watch the provided video and mark out the scenes that stand out
- highlight contents in the video described by a sentence query, - based on the description: 'Man in black top walks to the table then
User determining the highlight timestamps and its saliency score on a scale User sits down.'. Document the timestamps of these highlights and
from 1 to 5. Now | will give you the sentence query: 'Woman is trying evaluate their saliency scores.

to cool off a man in a yellow shirt.'. Please return the query-based
highlight timestamps and salient scores. There are 14 highlight moments in the 108.0,110.0, 112.0, 114.0,

116.0, 118.0, 120.0, 122.0, 124.0, 126.0, 128.0, 130.0, 132.0, 134.0

%@ There are 14 highlight moments in the 54.0, 56.0, 58.0, 60.0, 62.0, Timechat - i
Tmethat  [104:0,166:0,68:0,170.0,172.0,/74.0,176.0,178.0;80.0 second, Their saliency scores are 3.0, 3.3, 3.3, 3.7, 3.0,3.7, 3.3,3.7, 3.3, 3.7,
Their saliency scores are 2.0, 2.0, 2.3, 2.7, 3.0, 3.0, 3.3, 3.3, 3.3, 3.3, 3.0,3.0,3.0, 3.0

3.3,3.3,3.3,3.0.
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Figure 5. Qualitative results for video highlight detection task. In each video, we instruct TimeChat to pinpoint the most thrilling, remarkable,
or emotive moment based on a specified query. The model is also required to assess the saliency score for each identified moment. We graph
the saliency scores in relation to the moment’s timestamp. The orange curve denotes the ground truth, while the blue curve signifies the
predictions made by our model.



