
XCube: Large-Scale 3D Generative Modeling using Sparse Voxel Hierarchies

– Supplementary Material –

Xuanchi Ren1,2,3 Jiahui Huang1 Xiaohui Zeng1,2,3 Ken Museth1

Sanja Fidler1,2,3 Francis Williams1

1NVIDIA 2University of Toronto 3Vector Institute

In this supplementary material, we provide additional details on our method and experiments. In Sec. 1, we describe

our sparse 3D deep learning framework, and compare it to state-of-the-art implementations. In Sec. 2, we provide more

implementation details for our method as well as precise definitions of our loss function and evaluation metrics. In Sec. 3,

we provide more qualitative results on all the datasets we trained/evaluated on in the main paper. We additionally provide a

supplementary video in the accompanying files to better illustrate our results.

1. Sparse 3D Learning Framework

All of our networks are implemented using a customized sparse 3D deep learning framework built on top of PyTorch. To

represent sparse grids of features and perform efficient deep-learning operations (convolution, pooling, etc.) over them, we

leverage NanoVDB [7], a GPU-friendly implementation of the VDB data structure [6]. A VDB tree is a variant of B+-Tree

with four layers where the top layer is a hash table, followed by two internal layers (with branching factor 323, 163), followed

by leaf nodes with 83 voxels.

To demonstrate the effectiveness of our VDB-based deep learning framework, we benchmark it against TorchSparse [11], a

state-of-the-art sparse deep learning framework. As shown in Tab. 1, our custom framework is both fast and memory-efficient,

especially for large input grid resolutions. Built upon the highly efficient VDB data structure, our 3D representation is

compactly stored in memory and supports more efficient nearest neighbor lookup and processing than its hash table counterpart

in [11]. Such a framework lays the foundation for our high-resolution 3D generative model and has potential to applications in

many other downstream tasks such as reconstruction and perception.

Voxel Grid Memory (MB) ↓ Convolution Forward Time (ms) ↓

Grid Resolution 512
3

1024
3

32
3

256
3

1024
3

TorchSparse [11] 15.0 104.6 2.1 8.5 446.0

Ours 3.6 8.4 0.5 5.0 149.6

Table 1. Sparse 3D benchmark results.

2. Implementation Details

2.1. Loss Definition

Our model is able to output various attributes A defined on the voxel grids. Here we omit the level subscript l for simplicity.

The direct output of the network at each voxel at each level includes surface normal n ∈ R
3, semantic label s ∈ R

S , and

neural kernel features φ ∈ R
4. Here the neural kernel features φ are used for computing continuous TSDF values in 3D space

for highly-detailed subvoxel-level surface extraction (using the techniques from [3]), and it could also be replaced with implicit

features q to extract TUDF values for open surfaces as in [8]. The attribute loss LAttr, as mentioned in Eq. (6) of the main text,

is a mixture of different supervisions, written as follows:

LAttr = λ1 ∥n− nGT∥
2

2
︸ ︷︷ ︸

normal loss

+λ2 BCE(s, sGT)
︸ ︷︷ ︸

semantic loss

+λ3 Ex∈R3∥f(x)− TSDF(x,XGT)∥1
︸ ︷︷ ︸

surface loss

, (1)

1

Figure 1. Results of micro-conditioning on Waymo dataset. The voxel number conditioning increases from left to right. There is a clear

trend of increasing number of voxels and more diverse contents in the sampled scenes.

where nGT and sGT are the ground-truth normal and semantic label at each voxel, and XGT is the ground-truth dense point

cloud of the surface. The surface loss is computed by sampling points x in the 3D space and comparing the predicted TSDF

values f(x) with the ground-truth TSDF values TSDF(x,XGT). To compute f(x) given arbitrary input positions, we leverage

the predicted neural kernels φ to solve for a surface fitting problem as in [3]:

f(x) =
∑

v

αvK(x,xv) =
∑

v

αvφ
⊤
v φ(x)Kb(x,xv), (2)

where v is the index of the voxels, φ(x) is the neural kernel evaluated at the input position x using bezier interpolation from its

nearby voxels, and Kb(x,xv) = B(x− xv) is a shift-invariant Bezier kernel. The coefficients αv are obtained by performing

a linear solve as detailed in [3]. Similarly, for open surfaces we can replace the neural kernels φ with implicit features q and

define f(x) as a local MLP function digesting trilinearly interpolated q at position x [8]. We set λ1 = 1, λ2 = 15, and λ3 = 1
in our experiment. For the KL divergence, we normalize it by the number of voxels of the voxel grid and then use a loss weight

λ = 0.0015 for all our experiments.

2.2. Conditioning

We explore diverse condition settings for our voxel diffusion models: (1) For the associated attributes from the previous level,

we optionally concatenate them to the latent feature X before the latent diffusion. For example, for user-control cases, we do

not concatenate them for flexibly adding or deleting voxels. (2) For the text prompts, we use cross-attention to fuse them into

the latent. (3) For the category condition, we use AdaGN and fuse them with timestep embedding by adding. (4) For single

scan conditions, we use an additional point encoder to quantize the single scan point cloud to a voxel grid and concatenate it

with the latent feature X.

Micro-conditioning. We found that the Waymo dataset suffers from missing voxels due to the sparsity of the LiDAR scans.

To mitigate this issue, we use a micro-conditioning scheme following SD-XL [9] to inject additional condition to the diffusion

backbone describing the number of the voxels. This helps when the dataset itself contains multi-modal distributions, and

allows fine-grained control of the generated scale of the scene.

2.3. Texture Synthesis

While our model is focused on generating 3D geometry, we also explore the possibility of generating textures for the generated

shapes. To this end, we use a state-of-the-art texture generator TEXTure [10] to create texture maps for the generated shapes.

The method works by applying a sequence of depth-conditioned stable diffusion models to multiple views of the shape.

Later steps in the process are conditioned on the previous steps, allowing the model to generate consistent textures with

smooth transitions. We choose to decouple the geometry and texture generation processes to allow for more flexibility

and controlability – e.g., given the same geometry, different textures can be generated and selected. We demonstrate the

effectiveness of the full pipeline on Objaverse dataset and use the same text prompts for both the geometry and the texture.

Results are shown in Fig. 2.

Generated

Geometry

Synthesized Textures

Figure 2. Diverse texture synthesis results. Based on the same generated geomtry, we could generate diverse textures by using TEXTrue [10].

2.4. Network Architecture

Variational Autoencoders (VAE). We use a custom Autoencoder architecture for our VAE. Given an input voxel grid, Gl

at level l, and associated per-voxel attributes Al, we first positionally encode each voxel using the same function as [5] and

then concatenate the positional encoding of each voxel with the corresponding attribute. We then apply a linear layer to the

concatenated positional embedding and attribute to lift it to a d-dimensional feature (Where d is chosen depending on the task

and described in Table 2). Our VAE then applies successive convolution and max pooling layers, coarsening the voxels to a

bottleneck dimension. When l = 1 (i.e. the coarsest level of the hierarchy), we zero pad the bottleneck layer into a dense

tensor, otherwise, the bottleneck is a sparse tensor. We then apply 4 convolutional layers to convert the bottleneck tensor

into a latent tensor X of the same shape and sparsity pattern as the bottleneck. Latent diffusion is done over the tensor X.

At the end of the decoder, we apply attributes-specific heads (MLPs) to predict the associated attributes within each voxel.

Hyperparameters for our VAEs are listed in Tab. 2.

Diffusion UNet. As mention in the main paper, we adopt a a 3D sparse variant of the backbone used in [1] for our voxel

latent diffusion. Hyperparameters for training them are in Tab. 3

2.5. Training Details

We train all of our models using Adam [4] with β1 = 0.9 and β1 = 0.999. We use an EMA rate of 0.9999 for all experiments

and use PyTorch Lightning [2] for training. For ShapeNet models, we use 8× NVIDIA Tesla V100s for training. For other

datasets, we use 8× NVIDIA Tesla A100s for training.

2.6. Metric Definition

To perform a quantitative comparison of our generative model on the ShapeNet dataset, we leverage the framework used in

[12] which uses the 1-NNA metric defined as follows: Given a generated set of point clouds Sg , a reference set of point clouds

Sr, and a metric D(·, ·) : 2R
3

× 2R
3

→ R between two point clouds, the 1-NNA metric is defined as

1-NNA(Sg, Sr) =

∑

X∈Sg
✶[NX ∈ Sr] +

∑

Y ∈Sr
✶[NY ∈ Sr]

|Sg|+ |Sr|
, (3)

where NA is the closest point cloud to A ∈ 2R
3

in the set Sg ∪ Sr − {X} under the metric D(·, ·) (i.e. the closest point cloud

to A in the generated and reference set not including A itself), and ✶[·] is the indicator function which returns 1 if the argument

is true and 0 otherwise.

Intuitively, the 1-NNA distance is the classification accuracy when using nearest neighbors under D to determine if a point

cloud was generated (∈ Sg) or not (∈ Sr). If the generated set is close in distribution to the reference set, then the classification

accuracy should be around 50% which is the best 1-NNA score achievable.

In our experiment, we sampled 2048 points from the surface of each shape (following [12]) to generate Sg and Sr and used

the Chamfer and Earth Mover’s distances as metrics D to compute the 1-NNA.

3. More results

In this section, we provide more qualitative results on all datasets. First, we show more text-to-3D results on Objaverse in

Fig. 4 to 6. Then, we show more results on ShapeNet in Fig. 3 and 7 to 9. Despite the high quality of our generated shapes,

we show that our model does not overfit the training samples and is able to generate novel shapes in Fig. 3 by retrieving the

most similar shapes in the training set given the generated samples. Furthermore, we show more results on Waymo in Fig. 10

and 11. Finally, we show more results on Karton City in Fig. 12.

Generated Shape Most similar shapes retrieved from training set

Figure 3. Shape Novelty Analysis. From our generated shape (left), we retrieve top-three most similar shapes in training set by CD distance

"A 3D model of lion"

"A campfire"

"A 3D model of croissant"

"A 3D model of eagle head"

"A 3D model of dragon head"

Figure 4. More qualitative results on text-to-3D.

"A voxelized dog"

"A diamond ring"

"A 3D model of cat"

"A 3D model of duck"

Figure 5. More qualitative results on text-to-3D.

"A designer dress"

"A 3D model of koala"

"A 3D model of mushroom"

"A fireplug"

Figure 6. More qualitative results on text-to-3D.

Figure 7. More qualitative results on ShapeNet Car.

Figure 8. More qualitative results on ShapeNet Airplane.

Figure 9. More qualitative results on ShapeNet Chair.

Figure 10. More qualitative results on Waymo.

Figure 11. More qualitative results on Waymo.

Figure 12. More qualitative results on Karton City.

ShapeNet ShapeNet Objaverse Objaverse Waymo Waymo

163 → 1283 1283 → 5123 163 → 1283 1283 → 5123 323 → 2563 2563 → 10243

Model Size 59.6M 3.8M 236M 14.9M 59.4M 3.8M

Base Channels 64 32 128 64 64 32

Channels Multiple 1,2,4,8 1,2,4 1,2,4,8 1,2,4 1,2,4,8 1,2,4

Latent Dim 16 8 16 8 16 8

Batch Size 16 32 32 32 32 32

Epochs 100 100 25 10 50 50

Learning Rate 1e-4

Table 2. Hyperparameters for VAE. For the Karton City dataset, we used the same hyperparameters as the Waymo dataset.

ShapeNet - 163 ShapeNet - 1283 Objaverse - 163 Objaverse - 1283 Waymo - 323 Waymo - 2563

Diffusion Steps 1000

Noise Schedule linear

Model Size 691M 79.6M 1.5B 79.6M 702M 76.6M

Base Channels 192 64 256 64 192 64

Depth 2

Channels Multiple 1,2,4,4 1,2,2,4 1,2,4,4 1,2,2,4 1,2,4,4 1,2,2,4

Heads 8

Attention Resolution 16,8,4 32,16 16,8,4 32,16 16,8 32

Dropout 0.1 0.0 0.0 0.0 0.0 0.0

Batch Size 256 256 512 128 512 256

Iterations varies* 15K 95K 80K 40K 20K

Learning Rate 5e-5

Table 3. Hyperparameters for voxel latent diffusion models. *We train our model with 25K iterations for ShapeNet Airplane, 45K

iterations for ShapeNet Car, and 35K iterations for ShapeNet Chair. For the Karton City dataset, we used the same hyperparameters as the

Waymo dataset and trained the models to converge.

References

[1] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In Advances in Neural Information

Processing Systems, pages 8780–8794, 2021. 3

[2] William Falcon and The PyTorch Lightning team. PyTorch Lightning, 2019. 3

[3] Jiahui Huang, Zan Gojcic, Matan Atzmon, Or Litany, Sanja Fidler, and Francis Williams. Neural kernel surface reconstruction. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4369–4379, 2023. 1, 2

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015. 3

[5] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes

as neural radiance fields for view synthesis. In ECCV, 2020. 3

[6] Ken Museth. VDB: high-resolution sparse volumes with dynamic topology. ACM Transactions on Graphics (TOG), 32(3):27:1–27:22,

2013. 1

[7] Ken Museth. Nanovdb: A gpu-friendly and portable vdb data structure for real-time rendering and simulation. In ACM SIGGRAPH

2021 Talks, New York, NY, USA, 2021. Association for Computing Machinery. 1

[8] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. Convolutional occupancy networks. In

European Conference on Computer Vision (ECCV), pages 523–540, 2020. 1, 2

[9] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl:

improving latent diffusion models for high-resolution image synthesis. arXiv preprint arXiv:2307.01952, 2023. 2

[10] Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, and Daniel Cohen-Or. Texture: Text-guided texturing of 3d shapes. In

SIGGRAPH, 2023. 2, 3

[11] Haotian Tang, Zhijian Liu, Xiuyu Li, Yujun Lin, and Song Han. Torchsparse: Efficient point cloud inference engine. MLSys, 2022. 1

[12] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, and Karsten Kreis. LION: latent point diffusion

models for 3d shape generation. In Advances in Neural Information Processing Systems, 2022. 3, 4

	. Sparse 3D Learning Framework
	. Implementation Details
	. Loss Definition
	. Conditioning
	. Texture Synthesis
	. Network Architecture
	. Training Details
	. Metric Definition

	. More results

