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Figure 1. Performance versus speed trade-offs for our self-distilled
masked AE and several state-of-the-art methods [4–6, 9, 10, 13,
14, 17, 19] (with open-sourced code), on the ShanghaiTech data
set. The running times of all methods are measured on a computer
with one Nvidia GeForce GTX 3090 GPU with 24 GB of VRAM.
Best viewed in color.

Abstract

In the supplementary, we present localization results, as
well as additional ablation and qualitative results. Finally,
we discuss the connections between our approach and other
frameworks based on masked auto-encoders.

1. Additional Results
Performance-speed trade-off. In the main article, we com-
pared the performance-speed trade-off of our masked AE

*corresp. author: raducu.ionescu@gmail.com; ⋄equal contribution

Ty
pe Method

Avenue Shanghai UBnormal

FPS

R
B

D
C

T
B

D
C

R
B

D
C

T
B

D
C

R
B

D
C

T
B

D
C

O
bj

ec
t-

ce
nt

ri
c

[2] 47.83 85.26 47.14 85.61 25.63 63.53 20
[4] 57.00 58.30 42.80 83.90 19.71 55.80 51
[5] 65.05 66.85 41.34 78.79 25.43 56.27 24
[8] 15.77 27.01 20.65 44.54 - - -

[10] 41.05 86.18 44.41 83.86 - - 12
[12] + [2] 49.01 85.94 47.73 85.68 - - 20
[12] + [5] 66.04 65.12 40.52 81.93 - - 31

[12] + [10] 46.49 86.43 45.86 84.69 - - 10
[17] + [5] 65.99 64.91 40.55 83.46 - - 31

[17] + [10] 62.27 89.28 45.45 84.50 - - 10
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l [1] - - - - 0.04 0.05 37
[9] 19.59 56.01 17.03 54.23 - - 28

[12] + [9] 23.79 66.03 19.13 61.65 - - 26
[15] 35.80 80.90 - - - - -
[16] 41.20 78.60 - - - - -

[17] + [9] 20.13 62.30 18.51 60.22 - - 26
[18] - - - - 0.01 0.01 56
Ours 46.77 66.58 26.42 66.67 23.58 50.36 1655

Table 1. RBDC and TBDC scores (in %) of several state-of-the-
art frame-level, cube-level and object-level methods versus our
self-distilled masked AE on Avenue, ShanghaiTech and UBnor-
mal. The top three scores for each category of methods are shown
in red, green, and blue. All reported running times (including
those of the baselines) are measured on a machine with an Nvidia
GeForce GTX 3090 GPU with 24 GB of VRAM.

with other state-of-the-art methods on the Avenue data set.
To demonstrate that our superior trade-off is maintained
across data sets, we hereby analyze the trade-offs of sev-
eral methods, including our own, on the ShanghaiTech data
sets. The results illustrated in Figure 1 clearly indicate that
our method is significantly faster than competing methods,
while surpassing the other frame-level anomaly detection
methods. This observation confirms the consistency of our
trade-off across data sets.
Anomaly localization results. To measure anomaly lo-
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Figure 2. Examples of frames and anomaly maps reconstructed by our teacher and student models. Additionally, the differences (discrep-
ancy maps) between the teacher and student outputs are shown in the sixth row. The first four columns correspond to abnormal examples
from the Avenue and ShanghaiTech data sets, while the last column corresponds to a normal example. Best viewed in color.

calization performance, we employ the recently proposed
Region-Based Detection Criterion (RBDC) and Track-
Based Detection Criterion (TBDC) [15]. Following Ra-
machandra et al. [15], we set the region overlap threshold to
0.1 and the track overlap threshold to 0.1, which allows us
to directly compare with other methods reporting the RBDC
and TBDC scores. In Table 1, we report the RBDC and
TBDC scores of our method versus frame-level and object-
centric methods, on the Avenue, ShanghaiTech and UBnor-
mal data sets.

When compared with frame-level and cube-level meth-
ods, our approach obtains the best RBDC scores on all three

data sets. Furthermore, our method outperforms all other
frame-level and cube-level methods on ShanghaiTech and
UBnormal, in terms of TBDC. The most dramatic differ-
ences in favor of our method are reported on the UBnor-
mal data set. Notably, our method also outperforms some
of the object-centric approaches, in terms of both RBDC
and TBDC. Considering that our approach is a frame-level
method, its anomaly localization results are remarkable.
Not only that our method is generally better than frame-
level and cube-level methods in terms of both RBDC and
TBDC, but its processing speed is significantly higher.

Qualitative results. In Figure 2, we illustrate the frame re-



Figure 3. Predictions for test video 07 from Avenue. The abnormal
bounding boxes are given by the convex hull of the patches labeled
as abnormal. Best viewed in color.

Figure 4. Predictions for test video 01 0015 from ShanghaiTech.
The abnormal bounding boxes are given by the convex hull of the
patches labeled as abnormal. Best viewed in color.

Figure 5. Predictions for test video 01 0051 from ShanghaiTech.
The abnormal bounding boxes are given by the convex hull of the
patches labeled as abnormal. Best viewed in color.

constructions and the anomaly maps returned by the teacher
and student models for five input frames. We keep the same
five examples as in the main paper, essentially adding the

Figure 6. Predictions for video Test001 from UCSD Ped2. The ab-
normal bounding boxes are given by the convex hull of the patches
labeled as abnormal. Best viewed in color.

outputs from the student model, as well as the discrepancy
maps between the teacher and the student. For the first four
examples, which are abnormal, we can see that the frame
reconstructions of both teacher and student models are de-
ficient in the anomalous regions, as desired. Moreover, in
the fourth example, the student entirely removes the bicycle
from its reconstructed output, which triggers a true positive
detection. The anomaly maps generated by the teacher are
generally better than the ones generated by the student. The
latter maps are well aligned with the ground-truth anoma-
lies, but the predicted anomalies cover a smaller than ex-
pected area. However, the discrepancy maps exhibit intense
disagreements in the anomalous regions, indicating that the
discrepancy maps are good indicators for abnormal events.
For the normal example depicted in the fifth column, the
anomaly and discrepancy maps do not show any pixels with
high anomaly scores, confirming that our method yields the
desired effect.

Another interesting remark is that the reconstructed
frames returned by the student are worse than those of the
teacher. This happens because the student learns to recon-
struct the teacher’s output frames instead of the original in-
put frames. Nevertheless, the reconstruction power of the
student is less important to us, i.e. we care more about ob-
taining discrepancy maps that are highly correlated with the
abnormal events. As discussed above, our student works as
expected, helping the teacher to better predict the anoma-
lies.

In Figure 3, we illustrate the anomaly scores for test
video 07 from the Avenue data set. On this test video, our
model reaches an AUC higher than 99%, being able to ac-
curately identify the person running and jumping around.

In Figure 4, we showcase the anomaly scores for video
01 0015 from the ShanghaiTech test set. As in the previ-
ous example, our model obtains an AUC higher than 99%,
returning higher anomaly scores when the skateboarder



(a) Varying α, while keeping β = 0.5 and γ = 0.5.

(b) Varying β, while keeping α = 0.5 and γ = 0.5.

(c) Varying γ, while keeping α = 0.5 and β = 0.5.

Figure 7. Micro AUC scores on the Avenue data set, while varying
the hyperparameters α, β and γ controlling the anomaly score con-
tributions of the teacher decoder, the teacher-student discrepancy,
and the classification head, respectively. Each hyperparameter is
varied between 0 and 1, while keeping the others fixed to 0.5.

passes through the pedestrian area.
In Figure 5, we present the anomaly scores for video

01 0051 from the ShanghaiTech test set. Our model reaches
an AUC of 97.03% on this video, being able to flag and lo-
cate the abnormal event, namely riding a bike into a pedes-

CvT block type
AUC

FPS
Micro Macro

MLP [20] 89.2 88.1 1454
Pointwise convolutions (ours) 91.3 90.9 1655

Table 2. Micro and macro AUC scores (in %) on Avenue [11] with
pointwise convolutional layers versus fully connected layers in the
CvT transformer blocks.

trian area.
In Figure 6, we illustrate the anomaly scores for video

Test001 from UCSD Ped2. Here, our model reaches an
AUC of 100%, being able to perfectly differentiate between
normal and abnormal events.
Ablating pointwise convolutions. We next assess the
impact of replacing the fully connected layers inside the
vanilla CvT blocks [20] with pointwise convolutions. The
results presented in Table 2 show that our minor architec-
tural change leads to a speed boost of 211 FPS and an
increase of 2.1% in terms of the micro AUC. The results
confirm that the pointwise convolutions provide a superior
trade-off between accuracy and speed.
Ablating anomaly score components. In Figure 7, we
illustrate the impact of α, β, and γ on the micro AUC
score computed on the Avenue data set. These hyperpa-
rameters are the weights associated to the three anomaly
score components, namely the teacher decoder, the teacher-
student discrepancy, and the classification head. We note
that all weight configurations lead to micro AUC scores
higher than 90%, indicating that our method is fairly ro-
bust to suboptimal tuning of α, β, and γ. Indeed, the vast
majority of combinations lead to micro AUC scores that are
higher than the micro AUC scores of all other frame-level
and cube-level methods evaluated on Avenue (see Table 1
from the main paper). Nonetheless, we generally observe
that the teacher decoder and the classification head should
have higher weights than the teacher-student discrepancy.

2. Extended Related Work

Driven by the goal of learning better high-level represen-
tations, some studies, such as [3, 21], tried to modify the
pretraining phase of the masked AE [7]. Since these meth-
ods [3, 21] may appear to be related to our approach, we
discuss the differences in detail below.

Chen et al. [3] argued that the pretraining procedure of
the vanilla masked AE [7] is suboptimal because learning
to reconstruct low-level information is not necessarily ben-
eficial for tasks such as classification. Hence, they propose
a procedure to reconstruct the high-level representations of
the masked tokens instead. The training is performed by
maximizing the cosine similarity between teacher and stu-
dent representations. The teacher is an encoder given by the
exponential moving average of past versions of the student



encoder. In their case, this training process is called self-
distillation because the student learns from aggregated past
versions of itself. In our case, self-distillation refers to the
fact that the teacher and the student have a shared (identical)
encoder. Hence, there is a large difference in terms of the
architecture and the training procedure between our model
and that of Chen et al. [3]. This is also confirmed by the fact
that Chen et al. [3] does not even cite the work of Zhang et
al. [22], which introduces the form of self-distillation that
inspired our work.

Yang et al. [21] modified the vanilla masked AE to learn
a spatio-temporal representation. The architecture attaches
an additional decoder, which is trained to reconstruct the
motion gradients. Unlike Yang et al. [21], we do not attempt
to reconstruct the motion gradients. Instead, we leverage the
motion gradient information to make our model focus on
reconstructing tokens which correspond to higher motion.
This is necessary to avoid reconstructing the static back-
ground scene, which is predominant in anomaly detection
data sets.

Aside from the technical differences, another aspect that
creates an even higher gap between our method and those of
Chen et al. [3] and Yang et al. [21] is the target task. Indeed,
our masked AE is specifically designed for abnormal event
detection in video, while the masked AEs proposed in [3,
21] are focused on improving the pretraining procedure.
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[17] Nicolae-Cătălin Ristea, Neelu Madan, Radu Tudor Ionescu,
Kamal Nasrollahi, Fahad Shahbaz Khan, Thomas B. Moes-
lund, and Mubarak Shah. Self-Supervised Predictive Con-
volutional Attentive Block for Anomaly Detection. In Pro-
ceedings of CVPR, pages 13576–13586, 2022. 1

[18] Waqas Sultani, Chen Chen, and Mubarak Shah. Real-World
Anomaly Detection in Surveillance Videos. In Proceedings
of CVPR, pages 6479–6488, 2018. 1

[19] Guodong Wang, Yunhong Wang, Jie Qin, Dongming Zhang,
Xiuguo Bao, and Di Huang. Video anomaly detection by
solving decoupled spatio-temporal jigsaw puzzles. In Pro-
ceedings of ECCV, pages 494–511, 2022. 1



[20] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,
Xiyang Dai, Lu Yuan, and Lei Zhang. CvT: Introducing Con-
volutions to Vision Transformers. In Proceedings of ICCV,
pages 22–31, 2021. 4

[21] Haosen Yang, Deng Huang, Bin Wen, Jiannan Wu, Hongxun
Yao, Yi Jiang, Xiatian Zhu, and Zehuan Yuan. Self-
supervised video representation learning with motion-aware
masked autoencoders. arXiv preprint arXiv:2210.04154,
2022. 4, 5

[22] Linfeng Zhang, Chenglong Bao, and Kaisheng Ma. Self-
Distillation: Towards Efficient and Compact Neural Net-
works. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(8):4388–4403, 2022. 5


