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Supplementary Material

7. Implementation Details
We present important training and architecture details, in-
cluding the parameter values that were used.

7.1. Architecture Details

Keypoint Detector. The keypoint detector is used as-is
from [38] and not trained further. It consists of a 5-block
Hourglass network [28] with a block expansion of 32 and
a maximum feature map size of 1024. For keypoint extrac-
tion, the images are resized to 64×64. After decoding, the
heatmaps are predicted by a final 7×7 convolution. Key-
point locations are given by the centroids of the correspond-
ing heatmap.

Latent Expression Extractor. The latent expression ex-
tractor X has a single 7×7 convolutional layer that predicts
nf = 32 individual feature maps for each keypoint. For
each keypoint, the individual feature maps computed by the
keypoint detector are aggregated in x and y direction with
the weights of the corresponding heatmap. After aggregat-
ing the features of each keypoint individually, the informa-
tion is concatenated and fused to predict a global expres-
sion vector. The fusion is performed by a 4-layer MLP with
(640− 1280− 640) hidden units and |e| output neurons.

Input and Query Representation. For both, the posi-
tional encoding in the input and query representation, we
set the number of octaves to Opix = 16 and Okey = 4 with
start octaves sOpix = −1 and sOkey

= −1. Together with
a latent expression dimension of |e| = 256, this results in
a query representation of size |QID | = 416 and an input
representation RSi

with 419 input channels, since we also
encode the RGB pixel color of the source image.

Patch CNN. In all experiments, we set the output feature
dimension of the Patch CNN to nfm

E = 768. Since we are
processing a very large number of input channels (419 when
|e| = 256), we use a bottleneck of 96 feature maps in the
first convolutional layer.

Encoder. The transformer encoder also has a feature di-
mension of 768. Each multi-head attention layer uses 12
heads with an attention dimension of 64. The encoder pro-
cesses the patch embedding of each source image individ-
ually, so that the cardinality of the set-latent scene repre-
sentation scales linearly with the number of source images.
This allows a flexible number of source images to be used.
In total, the encoder and Patch CNN (with |e| = 256) have
29,774,112 parameters.

Decoder. The decoder has a feature dimension equal to
the size of the query representation |QID |. The input MLP
(see decoder in Fig. 2) has two layers with 720 hidden
units and |QID | output neurons. In the attention blocks,
we also use 12 heads with an attention dimension of 64.
The MLP inside the attention block, which fuses the in-
formation from the individual heads, has two layers and
2|QID | hidden units. The final 5-layer render MLP has
(1536 − 1536 − 1536 − 768) hidden units and three out-
put neurons for the RGB color.

For our small decoder ablation Ours/smallD, we reduce
the number of heads from 12 to 6 and also halve the num-
ber of hidden units of the MLP inside the attention block.
Finally, we replace the render MLP with a smaller 3-layer
version with (1536 − 768) hidden units. Compared to our
standard decoder, the number of parameters is reduced from
15,310,131 to 6,012,723.

Discriminator. For the keypoint-aware discriminator A,
we use the implementation of Siarohin et al. [38] which is
based on [15]. The input is an RGB image concatenated
with ten heatmaps representing the driving keypoints. In
total, we use four blocks, resulting in 512 output features
with a downsampling factor of 16. For further implementa-
tion and loss details, we refer to Siarohin et al. [38].

7.2. Training Details

We train on three NVIDIA A100 (80GB) GPUs for about
23 days. We found that warming up (i.e. Phase I training,
explained in Sec. 3.3) is essential to avoid ending up in lo-
cal minima. Also, the batch size should be large enough. In
our experiments we found out that 24 is sufficient. With
a batch size of eight, training progressed slowly and ap-
peared to be very unstable. Furthermore, we ended up in
a local minimum with poor inference performance. When
adding adversarial losses in training Phase III, we allow the
discriminator to warm up for 500 iterations without com-
puting gradients for the model. This is essential since oth-
erwise the untrained discriminator will influence the current
training progress with gradients of large magnitude.

Stopping Criterion. We extract a validation dataset,
which we use to validate the self- and cross-reenactment
performance. The self-reenactment performance is mea-
sured as in Tab. 1. For cross-reenactment, we randomly
sample source images and driving videos. Model perfor-
mance is judged visually by us. We found that it is not nec-
essary to choose between good self- and cross-reenactment



performance, as both are typically correlated. We thus use
self-reenactment scores as a way to find promising models
and then verify cross-reenactment performance.

Visualizing Out-of-frame Motion. As explained in
Sec. 3.1, we use a negative octave in the positional encod-
ing of pixels and keypoints to uniquely encode values in
(−2, 2). However, the VoxCeleb dataset [27] (prepared as
suggested by Siarohin et al. [38]) itself has no out-of-frame
motion. Instead, we create out-of-frame motion by crop-
ping the image with respect to the source image keypoints.
We use external pre-estimated face keypoints [3] and select
a random crop of all selected images (source and driving)
such that all source keypoints are inside. Finally, the images
are resized back to 256×256, which may change the aspect
ratio and induces additional regularization. In some cases,
the driving face will now be partially outside the image—
generating corresponding training samples.

Since cropping will reduce the image resolution to less
than 2562, we download the dataset at the highest resolution
possible so that the crop (before resizing) is ideally larger
than 2562 and no image detail is lost.

The keypoint detector can only predict keypoints within
the image. Therefore, we detect keypoints of the uncropped
images and use the cropping information to transform them
into the cropped images.

Unlike the source keypoints, the latent expression vec-
tors are extracted directly from the cropped source images.
When extracting expression vectors from the driving frame,
the differently augmented driving frame version (as ex-
plained in Sec. 3.2), ensures that the driving face is inside
the image. In Fig. 6, we show that not addressing out-of-
frame motion leads to poor results when keypoints are out-
side the image or close to the image boundaries.

7.3. User Study Details

We selected 30 different people to participate in the user
study (see Tab. 2). Since we compared the methods in
pairs, each participant was only allowed to judge one re-
lated method. Furthermore, each participant judged both
relative motion transfer and absolute motion transfer. The
face reenactment task was initially explained, and partici-
pants were instructed to base their decision on the following
two criteria:
1. Does the motion transfer work well (including ID preser-

vation)?
2. Does the animation look like a natural and consistent

video?
Each participant was simultaneously shown the source im-
age, the driving video, our result and the animation of the
comparison method. In each of the 20 sequences, we ran-
domized whether our method was shown on the left or on
the right. Participants could only decide once the video had
run through. However, the video automatically restarted, so

Source Driving Ours w/o Neg. Octave

Figure 6. Out-of-frame motion with (Ours) and without explicit
addressing keypoints outside the image (w/o Neg. Octave). Out-
of-frame motion only occurs when relative motion transfer is used
(see Sec. 3.4). The predicted images are visualized with the driv-
ing keypoints that were used in the decoder. Images from the Vox-
Celeb test set [27].

Method SSIM↑ PSNR↑ L1↓ AKD↓

Ours .7576 23.67 .0421 2.13
Ours/ 1 → 2-Src .7181 23.06 .0453 2.42

Ours/ 2-Src .7891 25.00 .0360 2.04
Ours/ 2 → 3-Src .8092 25.80 .0325 2.00
Ours/ 2 → 1-Src .7610 23.85 .0418 2.13

Ours/t → i-Src means that the model trained with t source images is
evaluated with i source images during inference.

Table 3. Self-reenactment results on the official VoxCeleb test
set [27] when generalizing to a different number of source im-
ages without explicit training. Training with two source images in-
creases self-reenactment performance, even when only one source
image is used for inference.

that there was no overall time limit. A decision was made
by clicking on the preferred video.

8. Additional Experiments & Results
We report auxiliary experiments and more qualitative re-
sults here.

8.1. Flexibility in the Number of Source Images

We investigate the generalization behavior with respect to
changing the number of source images during inference.



Here, our reference model was trained with a single source
image and with two source images. As reported in Tab. 3,
the model trained with two source images generalizes in
both directions, with fewer and with more source images
used for inference. Interestingly, when reducing the number
of source images to one (line Ours/2 → 1-Src in Tab. 3) it
even produces slightly better self-reenactment results than
our model explicitly trained with only one source image
(line Ours in Tab. 3). With three source images available for
inference (line Ours/2 → 3-Src in Tab. 3), the performance
increases further, indicating that additional source images
can be added at inference as available.

The model trained with only one source image shows a
significant drop in performance when the number of source
images is increased during evaluation (line Ours/1 → 2-Src
in Tab. 3). Therefore, if a flexible number of source images
is desired, we recommend training with at least two source
images. Alternatively, the number of source images can be
chosen flexibly during training. To ensure that the data can
still be batched, we recommend always selecting the maxi-
mum number of source images, but masking the set-latents
of unnecessary source images in the attention module of the
decoder.

8.2. Ablation Study

In Figs. 9 and 10 we present qualitative results of our ab-
lations (see Sec. 4.2) in the cross- and self-reenactment sit-
uation, respectively. In terms of motion transfer accuracy,
our reference model with |e|=256 produces slightly better
results than models using |e|=64 or |e|=128.

By using two source images, information from both
source images can be extracted and fused to produce more
accurate animations. Especially if the second source image
reveals occluded background or different head regions, less
information has to be guessed by the model. As shown in
Figs. 9 and 10, using multiple source images (Ours/2-Src)
can help to produce animations with more detail in face,
hair, and background.

Our ablation with a small decoder (Ours/smallD) has
a motion transfer capability similar to our reference model
(Ours), but with a slightly reduced sharpness in the anima-
tions.

8.3. Comparison with State-of-the-Art Methods

In Fig. 11 and Fig. 12 we present additional cross-
reenactment results on the VoxCeleb test set [27] with rel-
ative and absolute motion transfer compared to all state-of-
the-art methods from our user study (see Tab. 2). While
TSMM [57], DaGAN [11], OSFS [49], and FOMM [38]
are also keypoint based, DPE [29] uses a latent head pose
description. This, however, eliminates the ability to per-
form relative motion transfer. As the visualizations show,
our method produces significantly more natural results with

Source Driving Ours

Figure 7. Out-of-distribution results with relative motion transfer
generated by our method. The source images are extracted from
popular paintings and the driving frames are from the VoxCeleb2
test set [5].

higher ID preservation and more accurate and plausible mo-
tion transfers. Especially when there is a large pose offset,
related methods often fail to produce satisfactory results.
For animated results, see our project page.2

8.4. Out-of-Distribution Animation

As shown in Fig. 7, our model trained on VoxCeleb [27]
generalizes to out-of-distribution source images extracted
from popular paintings.

2https://andrerochow.github.io/fsrt

https://andrerochow.github.io/fsrt


8.5. Generalizing to other Datasets

We report generalization examples of our models trained on
VoxCeleb to other datasets at inference time. Specifically,
we show the following source → driving combinations:
• CelebA-HQ [18] → VoxCeleb2 [5] in Fig. 13,
• VoxCeleb2 [5] → VoxCeleb2 [5] in Fig. 14, and
• CelebV [54] → CelebV [54] in Fig. 15.

We note that VoxCeleb2 covers a significantly larger num-
ber of identities in the test set compared to VoxCeleb. As
the results show, our model generalizes to all of these com-
binations, while still producing more accurate animations
compared to related methods.

8.6. Omitting Keypoints

We present qualitative results of our model ablation
Ours/nK = 0 without keypoints in Fig. 15. Compared to
our reference model (Ours), we found that the accuracy of
the motion transfer is slightly reduced. In particular, the an-
imated gaze direction seems to be less accurate (see third
row in Fig. 15). Omitting the keypoints makes it impossible
to perform relative motion transfer, since all pose informa-
tion is implicitly encoded in the expression vector e.

In this variant, images input to the expression network
are not augmented through cropping, since this makes re-
covery of the head pose impossible without keypoints.
However, we discovered that performing a random cen-
ter crop with variable aspect ratio on the driving frame
(while requiring the network to reconstruct the full driving
frame) reduces shape deformations, since the network be-
comes invariant against aspect ratio changes and scale (see
Ours/nK = 0 + Crop Aug. in Fig. 8). While this might
be useful in cross-reenactment applications where relative
motion transfer is not required, it reduces self-reenactment
scores (see Tab. 4)—where this invariance is not helpful but
actually harmful. A particular reason for this might be that
this variant cannot transfer zooming or dolly shots due to
scale invariance.

8.7. Statistical Regularization

In Fig. 16, we visualize the effect of training without our
proposed statistical regularization. As the results show,
training without LCov and LVar leads to significant artifacts
around the animated face region, indicating that ID infor-
mation leaks from the driving frame through the expres-
sion vector eD. Our proposed factorization is therefore not
achieved.

Method #KP SSIM↑ PSNR↑ L1↓ AKD↓

Ours 10 .7576 23.67 .0421 2.13
nK = 0 0 .7445 23.56 .0436 2.64
+Crop Aug. 0 .7240 22.98 .0469 2.99

Table 4. Self-reenactment results on the official VoxCeleb test
set [27]. We compare our model ablation without keypoints
(Ours/nK = 0) with an ablation that is additionally trained with
random center cropping (Ours/nK = 0 + Crop Aug.). The scores
of our reference model (Ours) are shown in the first row.
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Source Driving Ours/nK = 0 + Crop Aug.

Figure 8. Ablations without keypoints. This comparison is using
absolute motion transfer. When combining a keypoint-less model
with random center cropping during training (right column), shape
deformations and scale changes are prevented. The images are
from the VoxCeleb test set [27], the VoxCeleb2 test set [5], and
the CelebA-HQ dataset [18] (as indicated by the source → driving
notation).



Source Driving Ours Ours|e|=128Ours|e|=64Ours/smallD Ours/2-Src Source 2

Figure 9. Ablation study in cross-reenactment on the VoxCeleb test set [27] with absolute motion transfer (upper block) and relative motion
transfer (lower block). Our ablation Ours/2-Src consistently fuses the information of both source images. It produces more detail in the
face, hair, and background, especially when the second source image reveals information missing in the first source image.



Source Driving Ours Ours|e|=128Ours|e|=64Ours/smallD Ours/2-Src Source 2

Figure 10. Ablation study in self-reenactment on the VoxCeleb test set [27]. The accuracy of motion transfer (especially mouth and eye
motion) decreases slightly when reducing the size of the latent expression vector e. In the first and fourth animation, Ours|e|=64 produces
inaccurate mouth expressions. Ours/2-Src generates more detail by integrating the information from both source images.



Source Driving Ours TSMM [57] DaGAN [11] OSFS [49] FOMM [38]

Figure 11. Comparison with SOTA on the VoxCeleb test set [27] in cross-reenactment (relative motion transfer). Our model generates more
accurate expressions, is less sensitive to the alignment assumption (Sec. 3.4), and learns to realistically fill missing face parts (third row).
Others often produce mismatched expressions and fail for large pose offsets. The last row shows a source image from CelebA-HQ [18].



Source Driving Ours TSMM [57] DaGAN [11] OSFS [49] FOMM [38] DPE [29]

Figure 12. Comparison with SOTA on the VoxCeleb test set [27] in cross-reenactment with absolute motion transfer. We generate more
accurate facial expressions with better ID preservation. Related methods often produce strong shape deformations, artifacts and blurry
results (especially in the mouth region). The sixth animation shows that our method even animates the sunlight on the side of the face.



Source Driving Ours TSMM [57] DaGAN [11] OSFS [49] FOMM [38]

Figure 13. Cross-reenactment generalization to driving videos from the VoxCeleb2 test set [5] and source images from the CelebA-HQ
dataset [18] with relative motion transfer.



Source Driving Ours TSMM [57] DaGAN [11] OSFS [49] FOMM [38]

Figure 14. Cross-reenactment generalization to driving videos and source images both from the VoxCeleb2 test set [5] with relative motion
transfer.



Source Driving Ours Ours/nK = 0 TSMM [57] DaGAN [11] OSFS [49] DPE [29]
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Figure 15. Comparison of our model with and without keypoints and state-of-the-art methods in cross-reenactment with absolute motion
transfer. The top block shows generalization to source and driving frames extracted from the CelebV dataset [54]. The bottom block shows
generalization to driving frames extracted from the VoxCeleb2 test set [5] and source images from the CelebA-HQ dataset [18].
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Figure 16. Benefit of statistical regularization (relative motion transfer). Training without LCov and LVar leads to visible artifacts around
the animated face (see red arrows), indicating that the identity of the driving person is leaking into the expression vector eD . The images
are from the VoxCeleb test set [27] (indicated with *) and the VoxCeleb2 test set [5] (remaining).


