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This Supplement includes additional detail for the
method and experiments, as well as additional experiments
and explanation too long for the main paper.

1. Network Architecture

We detail the full model along with ablations below as
a function of their components; these correspond to pre-
dicted pose boxes in Figure 3 of the paper. Architecture is
overviewed in Tables 1-2 and detailed in Tables 3-7.
Solver Ts. Pose estimation from a correspondence estima-
tor followed by a Kornia [4] implementation of RANSAC
+ 5-Point Algorithm, optionally scaled by predicted transla-
tion scale. Compare to FAR: Full T, this ablation does not
use the Transformer, nor combine Solver and Transformer
predictions, nor do a second round of prior-guided solver
and combining with Transformer.

We refer to this as “Solver” if it uses perturbed ground
truth correspondences as input (Figure 4), meaning no cor-
respondence estimator is used. We refer to this as Corr. +
Solver in experiments if correspondence estimator is used
(Figure 6 and 8 from paper). We refer to it as Corr. +
Solver + Scale if predicted scale is used to evaluate abso-
lute translation error (Figures 1, 2, 7; Table 2); we refer to
it as LoFTR + Solver + Scale if LoFTR is used (Table 2).

Predicted scale for Solver Ts is the output of the Trans-
lation Scale Predictor network detailed in Table 7. It takes
dense features f as input and outputs a single scalar, which
is multiplied by translation angle output from RANSAC +
5-Point to obtain final translation. Early in experiments, we
used a transformer-based architecture to predict scale, but
found this CNN-based method performed better.
FAR: Transformer Tt. Predicted 6DoF pose from FAR’s
Transformer. Compare to FAR: Full T, this ablation does
not use the Solver, nor combine Solver and Transformer
predictions, nor do a second round of prior-guided solver
and combining with Transformer.

In the case dense features are available, the 8-Point ViT
is used, if only correspondences plus descriptors are avail-
able, the Vanilla TF is used. Each is detailed in Table 3 and

Table 4, respectively.

FAR: One Round T1. Predicted 6DoF pose from one
round of FAR, which consists of the weighted linear com-
bination in 6D [8] space of Tt and Ts, weighted by w as
described in Equation 1 from the paper. Compare to FAR:
Full T, this ablation does not do a second round of prior-
guided solver and combining with Transformer.

FAR: Updated Tu. Pose estimation from FAR’s prior-
guided RANSAC + 5-Point Algorithm, using T1 as a prior.
Compare to FAR: Full T, this ablation does not do a second
round of combining with the Transformer. Note: results
from FAR: Updated Tu tend to be less accurate than FAR:
One Round T1. This is expected, as FAR: Updated Tu is
intended to be used in combination with Transformer out-
put Tt to form final output. In other words, our goal of
FAR: Updated Tu is to improve upon Solver Ts, resulting
in better final output after combining with Tt.

FAR: Full T. Final predicted 6DoF pose consisting of the
weighted linear combination of Tt and Tu, weighted by w.

For LoFTR Feature Extractor and Correspondence Esti-
mator, we use H = 480,W = 640 and D = 256, h =
60, w = 80, except on Map-free Relocalization experi-
ments, where images are size H = 720,W = 544, so
using the same downsampling, h = 90, w = 68. For Super-
Glue Correspondence Estimator, we use H = 480,W =
640. For 8-Point ViT Feature Extractor (InteriorNet and
StreetLearn experiments), we use H = 224,W = 224
and D = 192, h = 24, w = 24. For 6D Reg Feature
Extractor (Map-free Relocalization experiments), we use
H = 360,W = 270 and D = 256, h = 12, w = 9. Map-
free Relocalization setup differs slightly from other setups
to use 6D Reg features as input rather than LoFTR or 8-
Point ViT, and 6D Reg produces a single feature vector for
a pair of images rather than two; for details see Section 3.4.
In Table 3, we break down the architecture of Transformer
Tt. 8-Point ViT output has d = D/nh + pe = 70, where
nh = 3 is the number of heads, and pe = 6 is the size of
positional encodings.
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Table 1. Model Architecture: FAR. High-level first defined, followed by detailed components. N varies depending on the number of
correspondences. For LoFTR Feature Extractor and Correspondence Estimator, we use H = 480,W = 640, D = 256, h = 60, w = 80.
Variables for alternative experiments described in text.

Overview
Operation Inputs Outputs Output Shape

Input Image - - 2× 3×H ×W
Feature Extractor Input Image fi, fj 2×D × h× w
Correspondence Estimator Input Image M N × 4
8-Point ViT Tt fi, fj Tt, w 9, 2
Solver Ts M Ts 9
One Round T1 Ts, Tt, w T1 9
Updated Tu M, T1 Tu 9
Full T Tu, Tt, w T 9

Table 2. Model Architecture: FAR (Vanilla TF).

Overview
Operation Inputs Outputs Output Shape

Input Image - - 2× 3×H ×W
Correspondence Estimator Input Image M N × 4
Vanilla Transformer Tt M Tt, w 9, 2
Solver Ts M Ts 9
One Round T1 Ts, Tt, w T1 9
Updated Tu M, T1 Tu 9
Full T Tu, Tt, w T 9

Table 3. Model Architecture: Transformer Tt (8-Point ViT).

Overview
Operation Inputs Outputs Output Shape

Input Features - fi, fj 2×D × h× w
LoFTR [7] Self-Attn. Block fi, fj fi,1, fj,1 2×D × h× w
LoFTR Cross-Attn. Block fi,1, fj,1 fi,2, fj,2 2×D × h× w
8-Point ViT [5] Cross-Attn. Block fi,2, fj,2 fo 2×D × d
Regression MLP fo Tt 9
Gating MLP fo w 2

Table 4. Model Architecture: Transformer Tt (Vanilla TF) Correspondences optionally include descriptors. If do not, skip Linear
Layer, use only Positional Encoding as input to Vanilla Transformer.

Overview
Operation Inputs Outputs Output Shape

Input Corr. - M N × 2× 2
Input Descriptor - Md N × 2× 256
Positional Encoding M fpos N × 384
Linear Layer Md fin N × 128
Vanilla Transformer fpos, fin ftmp N × 512
Global Avg. Pooling ftmp fo 512
Regression MLP fo Tt 9
Gating MLP fo w 2



Table 5. Model Architecture: Regression MLP.

Overview
Operation Inputs Outputs Output Shape

Input Features - fo shape(fo)
Linear fo ftmp0 512
ReLU ftmp0 ftmp1 512
Linear ftmp1 ftmp2 512
Linear ftmp2 ftmp3 512
ReLU ftmp3 ftmp4 512
Linear ftmp4 Tt 9

Table 6. Model Architecture: Gating MLP Shape of fo is 512 in the case of Vanilla Transformer and D in the case of 8-Point ViT.

Overview
Operation Inputs Outputs Output Shape

Input Features - fo shape(fo)
Input Transformer Predicted Pose Tt - Tt 9
Input Solver Predicted Pose Ts - Ts 9
Input Number of Solver Inliers - ni 3
Linear fo, Tt, Ts, ni ftmp0 512
ReLU ftmp0 ftmp1 512
Linear ftmp1 ftmp2 512
ReLU ftmp2 ftmp3 512
Linear ftmp3 wtmp 2
Sigmoid wtmp w 2

Table 7. Model Architecture: Scale Prediction Network.

Overview
Operation Inputs Outputs Output Shape

Feature Extractor Input - fi, fj 2×D × h× w
MaxPool2D fi, fj fi,a, fj,a 2×D × h/2× w/2
Conv2D fi,a, fj,a fi,b, fj,b 2×D/2× h/2× w/2
ReLU fi,b, fj,b fi,c, fj,c 2×D/2× h/2× w/2
MaxPool2D fi,b, fj,b fi,c, fj,c 2×D/2× h/4× w/4
Conv2D fi,c, fj,c fi,d, fj,d 2×D/4× h/4× w/4
ReLU fi,d, fj,d fi,e, fj,e 2×D/4× h/4× w/4
Conv2D fi,e, fj,e fi,f , fj,f 2×D/16× h/16× w/16
ReLU fi,f , fj,f fi,g, fj,g 2×D/4× h/16× w/16
Linear fi,g, fj,g f0 512
ReLU f0 f1 512
Linear f1 f2 512
ReLU f2 f3 512
Linear f3 s 1

2. Prior-Guided Robust Pose Estimator

In our implementation of prior guided pose estimation we
use RANSAC as the solver to search over the hypothesis
space and also score our models with inlier scores. We use
the five-point algorithm to estimate the Essential Matrix [3].
Choosing the five-point algorithm is beneficial in the case of

known intrinsics (available in all datasets we use) as it only
requires 5 correspondences to estimate a minimal model.
This increases the chance of sampling a better hypothesis H
over multiple RANSAC iterations. The five-point algorithm
recovers the essential matrix corresponding to a minimal set
(5) and we convert this to a translation and rotation matrix



(up to scale).
Prior Probability. The β(H|T1) measures the log prob-
ability of the hypothesized model H under T1. The H is
the essential matrix and T1 is the 6D transformation matrix
from round of prediction. Since it is difficult to measure
the probability of H under T1 we design a proxy formula-
tion. We simplify the formulation with by computing the
implied transforms {T{H,k}}2k=1 corresponding to each of
two possible solutions for the rotation matrix.

There are multiple possible ways to measure the prob-
ability of the transform TH,k under T, one possible solu-
tion is to independently measure the distribution for rotation
and translation component. This approach however requires
tuning different weights for each of the components. In our
case we measure the difference in the two transformation
by computing the implied effect of the transformations on a
given point set.

Specifically, for a randomly sampled point set G ≡
{g}Ll=1 in R3 such that gl ∈ (−3,−3)3. We transform these
points with T{H,k} and T1. We then compute the squared
residuals, rNi , as distance between the transformed point
sets. Assuming the distribution of residuals to be proxy for
the pose prior, we can now compute the probability of resid-
uals under a standard Gaussian distribution as,

β′(TH,k,T) = log(

L∏
l=1

exp(−r2l )/Z), (1)

Z is the normalization constant for the probability distribu-
tion. We have two hypothesis corresponding to each H so
we choose solution with the highest log likelihood that best
fits with prior to recover β(H,T) as,

β(H,T) = max

(
β′(T{H,1},T), β′(T{H,2},T)

)
(2)

Scoring Function. Using the prior score above now we
can combine this with our existing RANSAC inliers scoring
function by combining the log likelihood for the hypothesis
H under T and the likelihood of correspondence set M un-
der the hypothesis H as,

score(H) = αβ(H,T) +
∑

(p,q)∈M

1

(
E(p,q|H) < σ

)
, (3)

here σ denotes the inlier threshold and E(p,q|H) measures
the Sampson error for correspondences p,q under the es-
sential matrix H

3. Additional Experimental Details
Our typical training procedure is to train the Correspon-
dence Estimator, followed by FAR: Transformer Tt jointly

with the backbone, followed by FAR: One Round T1, fol-
lowed by FAR: Full T. At each step, we train until vali-
dation mean rotation error plateaus, and reload the existing
components for the next round of training. In some cases
different steps are not applicable e.g. we build upon learned
pose backbone in Map-free Relocalization and cannot train
the prior on StreetLearn or InteriorNet. We use OneCy-
cleLR [6] scheduler, except if using 6DReg backbone; here
we follow prior work [1] in using a constant learning rate.
FAR’s Kornia-based solver is slower than OpenCV, so for
speed we use OpenCV solver to compute Ts in our final
model. For fair comparison in ablations, we compute Ts

using Kornia.

3.1. Ground Truth Robustness Study

In this experiment, we are given correspondences as in-
put, so we proceed directly to training FAR: Transformer
Tt and remaining steps. Training upon perturbed ground
truth correspondences typically plateaus after 90 epochs for
FAR: Transformer Tt and FAR: One Round T1; we find
10 epochs of additional training is sufficient for FAR: Full
T. We report Tt output after FAR: Transformer Tt training
rather than after training with the other components in Far:
Full T. This is because after full training, Tt is inaccurate
standalone, since it is trained to be effective in conjunction
with Ts. We report Tu and T after full training of T. We
noticed a mistake in Tu computation in the ground truth
experiment in the original submission; fixing this improves
Tu, particularly in the case of more outliers. This is more
consistent with our claims the prior improves Solver robust-
ness; intuitively most to outliers. FAR still matches or out-
performs Tu, most significantly in the case of noise. We use
ground truth correspondence computed via LoFTR’s corre-
spondence algorithm from true pose and depth, which con-
sists of a mutual nearest neighbor check.

3.2. Wide-Baseline Pose Estimation on Matter-
port3D

On the full dataset, we found LoFTR reached best perfor-
mance after 30 epochs, FAR: Transformer Tt reached best
performance after 39 epochs, FAR: One Round T1 reached
best performance after 32 epochs, FAR: Full T plateaued
after 14 epochs. If using the Vanilla Transformer, FAR:
Transformer Tt reached best performance after 89 epochs,
FAR: One Round T1 reached best performance after 69
epochs, FAR: Full T plateaued after 12 epochs. We report
Tt after its training for the reasons detailed in 3.1. In ad-
dition, we report Ts output after Correspondence Estimator
training for consistency with the Correspondence + Solver
baseline throughout the paper. This has little impact upon
results compared to reporting after full training of T.

In paper submission, we reported Tu using scale from
LoFTR + Solver + Scale for like-for-like comparison with



the unbiased solver. For final release, we report Tu using
scale from the final FAR model, as this is more consistent
with the method figure. For reference, applying the prior
to LoFTR + Solver + Scale is reported below. It provides
a large improvement to rotation accuracy while translation
accuracy still struggles due to poor predicted scale.

Translation (m) Rotation (◦)
Transformer: 8-Point ViT Med.↓ Avg.↓ ≤1m↑ Med.↓ Avg.↓ ≤30↑
LoFTR + Solver + Scale Ts 0.85 1.21 56.3 0.26 9.66 91.2
LoFTR + Updated Solver + Scale Tu 0.83 1.17 57.5 0.26 6.62 93.7

Transformer: Vanilla TF

LoFTR + Solver + Scale Ts 0.85 1.21 56.3 0.26 9.66 91.2
LoFTR + Updated Solver + Scale Tu 0.83 1.17 57.2 0.26 7.30 93.2

3.3. Approach Flexibility

Flexibility to Features and Correspondences. 8-Point
ViT features refers to spatial features after all self-attention
layers in the 8-Point ViT backbone, since the cross-attention
layer in 8-Point ViT produces only a flattened array of fea-
tures. Given this input, FAR: Transformer Tt uses the 8-
Point ViT variant. This normally consists of a LoFTR layer
followed by 8-Point ViT cross-attention. However, in this
special case of 8-Point ViT input, we drop the LoFTR layer
to make FAR: Transformer Tt equivalent to full 8-Point ViT
output. This allows for closer comparison to the original 8-
Point ViT work, while using a specialized architecture, in
which inserting a LoFTR layer would not likely be helpful.
FAR: Full T can then use FAR: Transformer Tt combined
with FAR: Updated, with solver output coming from either
LoFTR or SuperGlue.

We follow 8-Point ViT training procedure for the model,
training for 120k iterations with batch size 60, or about 225
epochs. We then repeat this procedure for FAR: One Round
T1 given correspondences from LoFTR or SuperGlue. Fi-
nally, we train for 20k iterations for FAR: Full T.
Dataset Size. On the 40% sized dataset, we found LoFTR
reached best performance after 86 epochs, FAR: Trans-
former Tt reached best performance after 94 epochs, FAR:
One Round T1 reached best performance after 43 epochs,
FAR: Full T plateaued after 27 epochs.

3.4. Wide-Baseline Pose Estimation on Additional
Datasets

InteriorNet and StreetLearn. We use 8-Point ViT as our
feature extractor on InteriorNet and StreetLearn as it is
SOTA and correspondence-based methods such as LoFTR
cannot be trained on the data as it does not contain depth.
We follow the training setup of Section 3.3, training FAR:
Transformer TT and FAR: One Round T1 sequentially,
reloading at each new phase of training, and following 8-
Point ViT training schedule for each phase. We cannot
use the prior since it requires translation prediction, which
cannot be supervised, since the dataset does not contain
translation information. Therefore, FAR: Full T is the
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Figure 1. Ground Truth Robustness Study on Matterport3D:
Mean Rotation Error. Using true correspondence, the solver has
low mean error, which is nonzero because of some image pairs
having limited ground truth correspondences, leading to small
mean error. As with median error, adding noise or outliers causes
it to quickly degrade, while prior-guided Updated solver is robust
to outliers and Transformer is robust to noise. FAR matches or
beats all methods across settings.

output from FAR: One Round T1. However, we find re-
sults are strong even without prior. On InteriorNet, we use
LoFTR pretrained on Matterport3D for correspondences.
On StreetLearn, correspondences come from LoFTR pre-
trained on MegaDepth.
Map-free Relocalization. We use 6D Reg as our feature
extractor for similar reasons to InteriorNet and StreetLearn:
6D Reg has most competitive rotation and translation errors
of existing methods, and correspondence-estimation meth-
ods such as LoFTR or SuperGlue cannot be trained on the
dataset since it does not contain depth.

6D Reg architecture is different from 8-Point ViT and
LoFTR in that it warps features to a common frame before
estimating pose. This setup is distinct from the canonical
setting of having two dense feature matrices as input, but
FAR can nevertheless be adapted. FAR’s Transformer Tt

takes features after the penultimate ResNet layer of 6D Reg,
which yields feature size of 12× 9× 256. The Transformer
is a Vanilla Transformer consisting of 6 Transformer En-
coder layers with feature size 256 and 8 heads. We choose
the penultimate layer as input to the Transformer as these
late features are instructional for predicting pose, and are
of feasible resolution and feature size for a Transformer.
The Vanilla Transformer is lightweight, allowing this to be
added to a light 6D Reg architecture without significantly
impacting run-time or batch size.

We begin from a 6D Reg backbone pretrained for 50
epochs, train FAR: Transformer Tt for 20 epochs, train
FAR: One Round T1 for 30 epochs (50 if using Super-
Glue correspondences; which runs faster), followed by an-
other 3 for FAR: Full T. Correspondences come from either
LoFTR or SuperGlue, both of which are pretrained on out-
door environments. SuperGlue is faster than LoFTR, lead-
ing to faster network speed during training and more itera-
tions in the same amount of time. FAR: Full T training is
slower given Kornia solver, so we train for only 3 epochs.
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Figure 2. FAR: Full T vs. FAR: One Round T1. After one
round, FAR produces high-quality results, making further im-
provement difficult. However, a second forward pass through the
solver injected with a prior (FAR: Full T) improves solver es-
timates. Correspondingly, the Transformer learns to give more
weight to the solver (right), and there is a nontrivial improvement
in rotation error in difficult cases (left, 100-250 inliers).

We nevertheless find this training beneficial.

4. Additional Results

4.1. Ground-Truth Robustness Experiment

Figure 1 presents mean rotation errors of methods con-
fronted with ground truth correspondences, with varying
amounts of noise and outliers. It corresponds to Figure 4 in
the paper, except mean rotation error is reported here rather
than median rotation error in the paper. The results corre-
spond to those in the paper: the solver is strong faced with
little noise or few outliers, but degrades severely. Prior-
guided Updated solver is robust to outliers, while Trans-
former is more robust to noise, at the expense of precision.
FAR produces the best of both results in either low pertur-
bation or high perturbation. Note solver median errors are
0, but mean errors are nonzero due to image pairs occasion-
ally having very few ground truth correspondences, produc-
ing high errors accordingly. However, this does not impact
the experimental conclusion.

4.2. FAR: Full vs. FAR: One Round

Figure 2 displays an analysis of FAR: Full T vs. FAR: One
Round T1. The distinction between these baselines is high-
lighted in Figure 3 in the paper, which is that FAR: Full
T adds an additional forward pass to the solver, this time
injected with the prior. Like FAR: One Round T1, this is
followed by combination with Transformer predictions.

Despite the two variants of the method being similar,
and results of FAR: One Round T1 being highly compet-
itive, FAR: Full T yields improvement. This is apparent in
the case of 100-250 inliers, where the prior improves solver
output, causing the Transformer to rely on it more (Figure 2,
right) and the full model to improve (Figure 2, left).

Note FAR: Full T has different weightings w than FAR:
One Round T1. This is because FAR: Full T is trained to
predict final output given prior-guided solver output. Since
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Figure 3. Efficiency on Matterport (Log Scale vs. Log Scale).
The efficient frontier includes LoFTR+Solver, T1 and T. FAR
Tt is strictly better than 8-Point ViT. FAR T1 cuts error almost in
half for little time cost. T improves further, but is slower due to
Prior-Guided RANSAC Kornia implementation. Kornia similarly
slows down LoFTR+Solver. T1 with Kornia (not pictured) is also
worse than T, while being slower. T+Scale Net further reduces
speed and improves Translation error.

prior-guided solver output is more accurate than vanilla
solver output, the network learns to rely upon it more heav-
ily. For fair comparison with FAR: Full T, we finetune
FAR: One Round T1 using a Kornia solver for an equal
number of epochs used to finetune FAR: Full T; before us-
ing the Kornia solver during inference. This is necessary
because, as detailed in 3, FAR: Full T uses cv2’s unbiased
solver during the first round of computation for efficiency.

4.3. Inference Time Efficiency Comparison

We plot error vs. time in Figure 3. FAR is on the ef-
ficient frontier (down and left), though it is slower than
LoFTR+Solver using OpenCV (cv2). We note a Prior-
Guided RANSAC implementation in cv2 could speed FAR
up towards 15fps (e.g. T1).

We also report the performance of using a separate net-
work to predict scale as suggested by R1. To do so, we
retrain FAR to predict translation angle only, then train a
separate network using the FAR Transformer architecture
to predict only scale, such that its final MLP also conditions
on predicted translation angle from the first network. It ap-
pears only on the right plot, as it impacts Translation and not
Rotation error. Indeed, it improves mean Translation error
at a small time cost. It produces median Translation error
of 0.19m, better than FAR’s of 0.25m; and yields 90.9% of
predictions within 1m, better than FAR’s 89.2%.

4.4. Map-free Precision Analysis

We thank R2 for pointing attention to lack of Map-free pre-
cision in the submission. After analyzing, we found an is-
sue with how FAR incorporated Solver predictions on Map-
free. Note this issue was specific to Map-free and did not
impact experiments on other datasets. After fixing this, the
precision of FAR improved to better than LoFTR or Super-
Glue on Map-free (paper Table 5), and Solver weight in-
creased to towards 1 on easier cases (Figure 4).
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Figure 4. Solver Weight on Map-free. Solver Weight on Map-
free has similar behavior to Matterport3D, with high weight in
easy cases and low weight in difficult cases. The result is high
precision and accuracy (paper Table 5).

4.5. Random Results

Results on random examples are presented in Figures 5- 8.
The comparisons are to the same baselines as in Fig-

ure 8 in the paper. C+S is an abbreviation for “Corre-
spondence Estimation + Solver”, specifically LoFTR with
a solver, and learned scale if necessary. L-B is an abbre-
viation for “Learning-Based”, in practice we use LoFTR
with an 8-Point ViT head for Matterport3D (specifically,
this is equivalent to FAR: Transformer Tt), we use 8-Point
ViT for InteriorNet and StreetLearn, and use 6D Reg for
Map-free Relocalization. We choose these learning-based
and correspondence-based comparisons as they are the state
of the art and we build upon them for our method: on all
datasets, we use LoFTR to extract correspondence; on Mat-
terport3D, we use LoFTR for features, on InteriorNet and
StreetLearn we use 8-Point ViT for features, and on Map-
free Relocalization we use 6D Reg for features.

Random results give visual grounding to quantitative re-
sults from the paper and are consistent with conclusions that
FAR outperforms both C+S and L-B. Only 14 results are
presented on each dataset, meaning the sample size is small,
and conclusions should not be drawn from aggregate num-
bers. Rather, these examples are intended to be indicative
of performance on a sample-by-sample basis.

For instance, on Matterport3D, FAR is best 10 out of 14
times in rotation and 7 out of 14 times in translation error.
In addition, when it is not best, it typically is better than one
of C+S or L-B and is typically not significantly worse than
the best method. The two qualities that it is often best and
rarely worst is in line with significantly better performance
than prior work averaged over a full test set.

Random Map-free Relocalization results also agree with
conclusions from the paper that FAR is strong. FAR has
best rotation and translation 7 out of 14 times; while rival
L-B wins 2 times in rotation and 3 times in translation; C-S
wins 5 times in rotation and 7 times in translation. Despite
strong performance some of the time, recall from the pa-
per C-S error is significantly higher on average than FAR.
This is showcased in the random results: when C-S fails, it
does so spectacularly, for instance with rotation error of at

least 120 degrees on 5 occasions, compared to 0 for FAR.
To summarize, in line with quantitative results from the pa-
per, in random samples FAR tends to be significantly more
robust than C-S, while producing best results frequently. L-
B is also more robust than C-S, but rarely produces best
results.

Random results on InteriorNet also are consistent with
the paper’s findings. FAR has lowest error in 7 of 14 oc-
casions, vs. 5 for L-B and 6 for C+S. However, the high-
est error for FAR is 4.2◦, while L-B hits 4.9◦ and C-S has
14.5◦. On StreetLearn, FAR has a maximum error of 4.4◦,
while L-B has errors up to 8.2◦ and C+S has errors of 124◦

and 177◦. FAR has lowest error in 8 instances, vs. 3 for
C+S and 5 for L-B. When FAR beats L-B, it is often better
by multiple degrees (up to 6, Figure 8, bottom left), while
when L-B bests FAR, it is typically by less than three de-
grees. To summarize, random results elucidate FAR is both
precise and robust.

Note results on Map-free Relocalization here, as well as
Figure 8 in the paper, are on the validation set, since the
test set ground truth is private – test results are available
from submitting predictions through the Map-free Relocal-
ization website (https://research.nianticlabs.com/mapfree-
reloc-benchmark/submit). Otherwise we use test sets for
random results.

4.6. Failure Cases

We can consider some failures in the random examples from
Figures 5-8. For instance, some examples in Map-free are
beyond the capacity of all the tested models: row 1 column
2 has all models with error above 60◦. This is a case of
a large rotation around a symmetric and unusually-shaped
object, so much so it might be initially challenging to a hu-
man. This is a case where recent work focused on visual
disambiguation [2] could be of assistance.

Occasionally, FAR also produces the worst results com-
pared to C+S and L-B, for instance in Map-free results row
2 column 4. Ideally, it would perform at least as well as the
best of C+S and L-B on any instance, but this is evidence it
is not always better than one alternative.
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Random Results: Matterport3D
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FAR: 1.3º

Tr Mag: 2.6m

C+S: 1.1m
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C+S: 0.5º

L-B: 2.2º

FAR: 0.3º
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C+S: 0.4m

L-B: 0.2m

FAR: 0.3m

Rot Mag: 82.7º

C+S: 73.4º

L-B: 2.6º
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Tr Mag: 0.4m

C+S: 1.0m

L-B: 0.3m

FAR: 0.3m
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C+S: 0.2m

L-B: 0.3m

FAR: 0.3m

Rot Mag: 48.6º

C+S: 0.1º

L-B: 12.2º

FAR: 0.1º

Tr Mag: 1.5m

C+S: 0.1m

L-B: 0.9m

FAR: 0.3m

Rot Mag: 31.2º

C+S: 0.5º

L-B: 4.2º

FAR: 0.1º

Tr Mag: 1.1m

C+S: 0.6m
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Rot Mag: 1.5º

C+S: 0.1º
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FAR: 0.4º

Tr Mag: 2.4m

C+S: 1.7m

L-B: 0.4m

FAR: 0.6m

Rot Mag: 4.9º

C+S: 1.8º
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FAR: 0.3m

Figure 5. Random results on Matterport3D. C+S: LoFTR [7] + Solver. L-B: LoFTR + 8-Point ViT [5]. FAR: uses LoFTR features and
correspondences. FAR is typically best. When not best, it is usually better than one of C+S or L-B.



Random Results: Map-free
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FAR: 0.1m

Rot Mag: 139º
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FAR: 67.2º
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C+S: 4.7m

L-B: 5.4m
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C+S: 120º

L-B: 33.5º

FAR: 28.1º
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C+S: 7.0m

L-B: 6.6m

FAR: 5.7m
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C+S: 1.3º

L-B: 4.0º

FAR: 1.2º
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C+S: 0.1m

L-B: 0.2m

FAR: 0.1m
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C+S: 0.3º

L-B: 5.2º

FAR: 1.0º
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C+S: 0.1m

L-B: 0.2m

FAR: 0.3m

Rot Mag: 12.8º

C+S: 1.1º

L-B: 12.9º

FAR: 23.3º

Tr Mag: 0.5m

C+S: 0.1m

L-B: 1.4m
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C+S: 4.0m
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C+S: 167º
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FAR: 20.9º

Tr Mag: 4.5m

C+S: 5.5m

L-B: 1.0m

FAR: 0.9m

Rot Mag: 39.6º

C+S: 27.6º

L-B: 12.2º

FAR: 20.3º

Tr Mag: 3.1m

C+S: 2.5m

L-B: 0.7m

FAR: 1.7m

Rot Mag: 46.6º

C+S: 18.4º

L-B: 6.9º

FAR: 2.6º

Tr Mag: 3.1m

C+S: 1.5m

L-B: 0.6m

FAR: 0.3m

Rot Mag: 7.1º

C+S: 21.5º

L-B: 34.0º

FAR: 38.1º

Tr Mag: 5.4m

C+S: 5.4m

L-B: 7.1m

FAR: 7.6m

Rot Mag: 27.5º

C+S: 5.3º

L-B: 60.7º

FAR: 67.4º

Tr Mag: 1.8m

C+S: 1.2m

L-B: 3.9m

FAR: 2.8m

Rot Mag: 93.0º

C+S: 166º

L-B: 169º

FAR: 38.3º

Tr Mag: 1.7m

C+S: 4.8m

L-B: 0.9m

FAR: 1.8m

Rot Mag: 8.5º
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L-B: 1.2º

FAR: 0.1º
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C+S: 0.1m

L-B: 0.1m

FAR: 0.1m

Figure 6. Random results on Map-free Relocalization. C+S: LoFTR + Solver. L-B: 6D Reg [1]. FAR: uses 6D Reg features and LoFTR
correspondences. FAR is often best, having minimum rotation error 7 instances vs. 5 for C+S and 2 for L-B, and minimum translation
error 7 times vs. 7 for C+S and 3 for L-B. C-S has far worse errors in failure cases than FAR (e.g. row 1 column 7).



Random Results: InteriorNet

Rot Mag: 65.0º
C+S: 4.3º
L-B: 1.4º
FAR: 4.2º

Rot Mag: 29.7º
C+S: 0.1º
L-B: 2.1º
FAR: 0.3º

Rot Mag: 59.8º
C+S: 8.7º
L-B: 4.1º
FAR: 2.3º

Rot Mag: 26.8º
C+S: 1.1º
L-B: 1.2º
FAR: 0.7º

Rot Mag: 36.4º
C+S: 4.3º
L-B: 3.4º
FAR: 0.9º

Rot Mag: 26.6º
C+S: 2.6º
L-B: 1.5º
FAR: 1.5º

Rot Mag: 10.8º
C+S: 0.3º
L-B: 1.9º
FAR: 0.3º

Rot Mag: 55.6º
C+S: 0.5º
L-B: 4.9º
FAR: 2.6º

Rot Mag: 60.7º
C+S: 14.5º
L-B: 3.3º
FAR: 4.2º

Rot Mag: 44.8º
C+S: 1.9º
L-B: 1.0º
FAR: 1.3º

Rot Mag: 44.6º
C+S: 7.0º
L-B: 3.4º
FAR: 1.6º

Rot Mag: 29.1º
C+S: 0.2º
L-B: 0.8º
FAR: 0.4º

Rot Mag: 18.0º
C+S: 0.5º
L-B: 0.5º
FAR: 0.5º

Rot Mag: 36.7º
C+S: 0.5º
L-B: 3.7º
FAR: 1.0º

Figure 7. Random results on InteriorNet. C+S: LoFTR + Solver. L-B: 8-Point ViT. FAR: uses 8-Point ViT features and LoFTR
correspondences. FAR has the lowest error more frequently than alternatives, and has the lowest maximum error: 4.2◦ vs. 4.9◦ for L-B
and 14.5◦ for C-S.



Random Results: StreetLearn
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L-B: 6.1º

FAR: 1.2º
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L-B: 2.4º

FAR: 1.2º

Rot Mag: 85.2º

C+S: 78.8º

L-B: 3.3º

FAR: 1.7º

Rot Mag: 48.0º

C+S: 23.3º

L-B: 0.8º

FAR: 3.2º

Rot Mag: 50.5º

C+S: 62.3º

L-B: 8.2º

FAR: 1.9º

Rot Mag: 71.4º

C+S: 3.2º

L-B: 2.3º

FAR: 1.6º
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L-B: 6.1º
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Rot Mag: 58.7º
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L-B: 1.3º
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Figure 8. Random results on StreetLearn. C+S: LoFTR + Solver. L-B: 8-Point ViT. FAR: uses 8-Point ViT features and LoFTR
correspondences. FAR often has the lowest error – here 8 times vs. 1 for C+S and 5 for L-B; and is more robust than alternatives: FAR
has maximum error of 4.4◦, L-B has maximum error of 8.2◦, C+S has errors of 124◦ and 177◦. When FAR beats L-B, it is often better by
multiple degrees (up to 6), while when L-B bests FAR, it is typically by less than three degrees.


