
TexTile: A Differentiable Metric for Texture Tileability

Supplementary Material
1. Introduction and Structure
In this supplementary material, we include extensive imple-
mentation details, additional results and visualizations.

The contents of this supplementary material can be di-
vided as follows:
• In Section 2, we provide extensive implementation details

of our model, training configuration, data augmentation,
and inference.

• In Section 3, we show additional evaluations we per-
formed to our model.

• In Figures 4 and 5, we show some images of our test set,
in both tileable and non-tileable categories.

• In Figure 6, we show additional examples of our data aug-
mentation policy.

• In Figures 7 and 8, we show full results of our compar-
isons with previous work on tileable texture synthesis, us-
ing the dataset in [15].

• In Figure 9, we show additional results of our tileable tex-
ture synthesis through outpainting method.

• In Figure 10, we show additional results of tileable texture
generation through Neural Texture Synthesis.

• In Figure 11, we show additional results of tileable texture
generation with single-image diffusion models.

• In Figures 12 to 17, we show additional results of our im-
age alignment algorithm.

• In Figures 18 to 20, we show additional results of our re-
peating pattern detection algorithm.

• In Figures 21 and 22, we show model saliency maps for
non-tileable and tileable textures, respectively.

• In Figures 23 to 34, we show filter visualizations of our
model, on different layers. We use the CNNLayerVisual-
ization class from the tool in the Convolutional Neural
Network Visualizations Github Repository for this visu-
alization, with additional modifications like gradient clip-
ping or weight decay for improved results. These visual-
izations provide additional insights on the kinds of pat-
terns the model is learning for detecting tileability.

• In Figure 35, we show results of an unsuccessful experi-
ment of using circular padding within single-image diffu-
sion models.

https://github.com/utkuozbulak/pytorch-cnn-visualizations/tree/master
https://github.com/utkuozbulak/pytorch-cnn-visualizations/tree/master


2. Implementation Details
2.1. Model Design

Our model builds upon a pretrained ConvNext [8]. In partic-
ular, we use the model architecture and weights ConvNeXt
Base Weights IMAGENET1K V1 from TorchVi-
sion [9]. To it, we introduce two residual and scaled
multi-head Linear Self-Attention layers [17] to the 5th and
7th layers of the model. We use 16 heads in each layer,
with 128 and 256 hidden units each, respectively. We
selected linear self-attention due to their relatively slow
computational cost, and placed them on the deeper layers
of the convolutional backbone as this yielded the most
cost-effective improvements. Placing them earlier in the
model was computationally too expensive.
2.2. Training & Data Augmentation

As mentioned on the main paper, we train our models for
100 epochs using NAdam [5], Lookahead [18], Automatic
Gradient Scaling and Mixed Precision Training [10], with
an initial learning rate of 0.002, halved every 33 epochs. We
use PyTorch [13] for training, and Kornia [14] for data aug-
mentation. We use batch sizes of 24 samples, composed of
balanced number of positive and negative examples. This
process takes approximately 6 hours on a single Nvidia RTX
3060 GPU. We use images of (384, 384) pixels for training
and (512, 512) for inference.

Hyperparameters for the data augmentation policy are
tuned using Bayesian optimization [2]. For specific imple-
mentation details of each policy, please refer to Kornia [14].
We include the specific values below:
• Color Augmentation: We perform random color aug-

mentation on HSV space. We randomly change the hue
of the images (full hue range), their contrast (factor of
0.4), brightness (factor of 0.25), and saturation (factor
of 0.25). We do this for every element in every batch
(𝑝(color augmentation) = 1).

• Rescales: We randomly rescale the input images, with
different factors for vertical and horizontal dimensions,
taken at random from the (0.6, 1.4) range. We do this for
every element in every batch (𝑝(rescales) = 1).

• Flips: We randomly flip the images horizontally and/or
vertically. We do this with probability: 𝑝(flipℎ) =
𝑝(flip𝑣) = 0.5).

• Blurs: We randomly blur the input images with two dif-
ferent types of blurs: Gaussian and Box blurs. We set
their kernel sizes to 7 and 3, respectively, and their prob-
abilities to 𝑝(blurgaussian) = 𝑝(blurbox) = 0.15.

• Noise: We apply random gaussian noise to the images
with a probability of 𝑝(noise) = 0.15 and a 𝜎 = 0.05.

• Equalization: We randomly equalize the input images
with a probability of 𝑝(equalize) = 0.1.

• Random Gamma: We randomly change the gamma the

input images with a probability of 𝑝(gamma) = 0.2, with
gamma and gain ranges selected at random in the range
(0.9, 1.1).

• Elastic Transformations: We randomly apply an
elastic transformation of the non-tileable images with
𝑝(𝑒𝑙𝑎𝑠𝑡𝑖𝑐) = 0.15, a kernel size of 15 and a 𝜎 = 32.

• Affine Transformations: We randomly apply affine
transformations of the non-tileable images with
𝑝(affine) = 0.25, with rotations and shears randomly
selected in the (−20, 20) ranges.

• Custom Augmentations: For the policies explained
in the main paper, we choose 𝑝(UnFold) = 0.1,
𝑝(𝐴𝑈𝐺𝐹→𝐹 ′ ) and 𝑝(𝐴𝑈𝐺𝑇→𝐹 ) = 0.25.
To ensure that each training batch is composed of the a

balanced number of positive and negative examples given
the previous probabilities, we select elements following:

𝑝(𝑇 ) =
1 − 2𝑝(𝐴𝑈𝐺𝐹→𝐹 ′ )

2𝑝(𝐴𝑈𝐺𝑇→𝐹 ) − 2𝑝(𝐴𝑈𝐺𝐹→𝐹 ′ )
(2)

Where 𝑝(𝑇 ) is the probability of selecting an element
from the training dataset composed of tileable examples.

As the last operation in our data augmentation and pro-
cessing pipeline, we standardize each image with the Ima-
geNet [4] standardization parameters.
2.3. Inference

As mentioned on the main paper, during inference, we ap-
ply a transformation to the logits of the model using a 𝜆 pa-
rameter. The logistic transformation has the goal of keeping
TexTile on the (0, 1) range, and 𝜆 helpslinearize the TexTile
values so they are more comparable and useful.

TexTile = 1
1 + exp

(

−𝜆 ⋅(Itiled)
) (3)

We always set 𝜆 = 0.25 during inference. However, this
may be changed at will. Its impact can be seen in Figure 1.
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Figure 1. Impact of the value of 𝜆 to the value of TexTile.



3. Evaluation
Input Resolution

We aim to measure the influence of the input resolution in
the performance of our models. To do so, we change the res-
olution of the tiled images Itiled on the [64, 1024] range, and
measure the classification performance on our test set, us-
ing ROC Area Under the Curve as our metric of choice. We
show the results of this experiment in Figure 2. The model
is generally robust to image resolution, showing very high
generalization capabilities on images larger than 192 pix-
els. The maximum performance is achieved at medium size
images, on the (384, 640) range. Tiny and very large resolu-
tions somewhat hinder the performance of the model. This
is probably due to the fact that very small resolutions may
hide seamlessness problems in the texture borders, while
larger images simply fall outside the range of resolutions that
were used during training. However, even in extreme reso-
lution scenarios, our model provides accurate estimations.
We used (512, 512) resolution in all of the experiments in
this paper and supplementary material.
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Figure 2. Impact of the resolution of the input images on the gen-
eralization of our model, measured on the test set.

Number of Repetitions

In this experiment, we aim to measure the number of repeti-
tions (i.e. tilings) to apply to the input images I to generate
Itiled. Similarly to the previous experiment, we change the
number of repetations in the tiled images Itiled on the [1, 10]
range, and measure the classification performance on our
test set, using ROC Area Under the Curve. We show the re-
sults of this experiment in Figure 2, where evaluation was
done using (512,512) pixel images. The model is generally
robust to this parameter, as the number of repetitions shown
during training is selected as random, making the model in-
variant to this factor. We observe that even if the images
are not repeated (repetitions=1), the model performs better
than random, which suggests that the model is able to lever-
age factors other than repeating artifacts for its estimations,

like illumination or alignment problems. Further, we see an
optimal performance at 2-6 repetitions. With more repeti-
tions than 6, our model predictions start to degrade, albeit
they are still accurate. We can thus conclude that the model
does not need to see more than 2 repetitions to obtain accu-
rate estimations. We use 2x2 tilings in every experiment in
the paper and supplementary material.
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Figure 3. Impact of the number of repetitions applied to the input
images on the generalization of our model, measured on the test
set.



Figure 4. Some images of our test set, with the category of tileable textures.



Figure 5. Some images of our test set, with the category of non-tileable textures.



Positive Examples

𝐴𝑈𝐺𝑇→𝐹

Figure 6. Additional examples of our data augmentation policy. From a tileable texture (top), our data augmentation can generate tileable
(middle) and non-tileable (bottom) variations.
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Figure 7. From top to bottom: Input images, results by Histogram Blending [3], Graph Cuts [7], Repeating Pattern Detection [16], PS-
GAN [1] , Self-Organising Textures [12], SeamlessGAN [15], Neural Texture Synthesis [6] without and with Textile, and SinFusion [11]
without and with Textile.
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Figure 8. From top to bottom: Input images, results by Histogram Blending [3], Graph Cuts [7], Repeating Pattern Detection [16], PS-
GAN [1] , Self-Organising Textures [12], SeamlessGAN [15], Neural Texture Synthesis [6] without and with Textile, and SinFusion [11]
without and with Textile.



Figure 9. Additional results of our method for tileable texture synthesis using outpainting, leveraging TexTile as a loss for tileability and
Neural Texture Synthesis [6] as the generative process. On the left, non-tileable input images with the area to be outpainted in a solid color;
on their sides, outpainted results, obtained by maximizing tileability, shown in a 2x2 tile composition.
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Figure 10. Additional comparisons of Neural Texture Synthesis with and without TexTile as a loss function. For each column, on the left,
we show input images, on the middle, the baseline result (tiled 2x2) of [6], on the right, the result (tiled 2x2) of our modification of [6]
which uses TexTile as an additional loss function.
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Figure 11. Additional comparisons of a Diffusion Model evaluated with and without TexTile. For each column, on the left, we show input
images, on the middle, the baseline result (tiled 2x2) of [11], on the right, the result (tiled 2x2) of our modification of [11] which uses
TexTile as a loss function during the diffusion process.
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Figure 12. On the left, TexTile under different rotation angles. On the right, samples of rotated images on different local peaks (tiled 2x2).
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Figure 13. On the left, TexTile under different rotation angles. On the right, samples of rotated images on different local peaks (tiled 2x2).
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Figure 14. On the left, TexTile under different rotation angles. On the right, samples of rotated images on different local peaks (tiled 2x2).
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Figure 15. On the left, TexTile under different rotation angles. On the right, samples of rotated images on different local peaks (tiled 2x2).
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Figure 16. On the left, TexTile under different rotation angles. On the right, samples of rotated images on different local peaks (tiled 2x2).

0°

45°

90°

135°

180°

225°

270°

315°

0.50

0.75

260º 0º

90º 296º
Figure 17. On the left, TexTile under different rotation angles. On the right, samples of rotated images on different local peaks (tiled 2x2).
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Figure 18. On the left, input image. In the middle, TexTile values for different crop sizes. The optimal crop is highlighted on both images
with a green inset. On the right, the optimal crop, tiled many times for visualization.
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Figure 19. On the left, input image. In the middle, TexTile values for different crop sizes. The optimal crop is highlighted on both images
with a green inset. On the right, the optimal crop, tiled many times for visualization.
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Figure 20. On the left, input image. In the middle, TexTile values for different crop sizes. The optimal crop is highlighted on both images
with a green inset. On the right, the optimal crop, tiled many times for visualization.



Figure 21. Saliency maps of our model for different textures which are not seamlessly tileable.



Figure 22. Saliency maps of our model for different textures which are seamlessly tileable. For these cases, the model is leveraging repeating
artifacts in the images that may hinder their tileability.



Figure 23. Visualization of some filters in the first layer of our model. Most of the filters in the first layer seem very similar, measuring
local intensities, colors, and very local edges.

Figure 24. Visualization of some filters in the second layer of our model. These filters appear to measure edges and local textures.

Figure 25. Visualization of some filters in the third layer of our model. As in the second layer, these filters appear to measure edges and
local textures.



Figure 26. Visualization of some filters in the fourth layer of our model. Notice how some interesting textures start to emerge.

Figure 27. Visualization of some filters in the fifth layer of our model. Notice how some interesting grid patterns start to emerge.

Figure 28. Visualization of some filters in the sixth layer of our model. Notice how some texture patterns emerge.



Figure 29. Visualization of some filters in the seventh layer of our model. This is the first self-attention layer in our model. In comparison
with previous layers, the patterns in these filters are more global, spanning much larger areas in the images.

Figure 30. Visualization of some filters in the eighth layer of our model. Similarly to the seventh layer, the patterns in these filters are
global, spanning large areas in the images. From this point onward, the patterns start to lose any clear semantic meaning.

Figure 31. Visualization of some filters in the ninth layer of our model.



Figure 32. Visualization of some filters in the tenth layer of our model.

Figure 33. Visualization of some filters in the eleventh layer of our model. This is the second and last self-attention layer in our model.

Figure 34. Visualization of some filters in the twelfth layer of our model.
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Figure 35. An experiment on circular padding. We changed the baseline implementation of SinFusion [11], changing the architecture to
use circular padding in the convolutional layers, inspired by this idea for Stable Diffusion. We did not achieve tileable textures with this
simple modification unless we introduced TexTile as a loss function during inference.

https://replicate.com/tommoore515/material_stable_diffusion/readme
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