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8. Geometric Consistency Evaluation
Previous works, e.g. [21], use conformal distortion errors
to evaluate geometric consistency. Yet, conformal distor-
tion only quantifies the smoothness of the resulting match-
ing as it only considers deformation of individual trian-
gles [22]. Consequently, smooth but non-geometrically
consistent matchings yield low conformal distortion errors
as can be seen in Fig. 10, in which we show various quali-
tative results with respective conformal distortion errors as
well as Dirichlet energies.

Yet, we want to quantify geometric consistency. For that,
we compute the Dirichlet energy [14, 24, 45] in the follow-
ing manner. We consider the Laplacian LX of shape X and
the difference between vertex positions of matched vertices,
i.e. deformation vectors � = V X � PX

Y V̄ Y (where V̄ Y are
the to V X rigidly aligned vertices V Y of shape Y using
ground truth matchings3) and PX

Y 2 {0, 1}|V X |⇥|V Y | is the
point-wise matching matrix assigning vertices of X to ver-
tices of Y . With that, we compute the Dirichlet energy as

EDirichlet = ||�||2LX = tr
�
�TLX�

�
. (4)

In Fig. 11, we show cumulative Dirichlet energy scores for
different methods. We can see that our method produces
low Dirichlet energy scores which validates that our method
indeed produces geometrically consistent results.

3note that we only use the ground truth for evaluation purposes
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Figure 9. Comparison of Dirichlet Energies for ground truth
(GT) matchings at different resolutions on FAUST dataset. Num-
bers in legends are mean Dirichlet Energies across all pairs. We
can see that Dirichlet energies at resolution of 450 triangles and
at resolution of 1000 are not fully comparable (even when using
ground truth matchings as in this plot) due to different densities of
deformation vectors �.
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Figure 10. Qualitative results and comparison of values of Con-
formal Distortion Errors / Dirichlet Energies for shown pairs.
Even though results for Ren et al. and Eisenberger et al. are not
geometrically consistent (emphasised by triangulation transfer via
the computed matching), certain conformal error values are lower
than geometrically consistent results computed with our method.
Further, we can see from shown examples that Dirichlet energy
better quantifies geometric consistency due to values being lower
for geometrically consistent solutions and vice versa.
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Figure 11. (Top) For convenience we repeat the the geodesic error plots on respective datasets from the main paper. Values in legends
are mean geodesic errors. (Middle) Comparison of Dirichlet Energies on datasets FAUST, SMAL and DT4D. Numbers in legends are
mean Dirichlet energies across all pairs. Note that Dirichlet energies on different shape resolution are not fully comparable due to different
density of deformation vectors � (cf. also Fig. 9). Consequently, we only include Dirichlet energies of Roetzer et al. for reference as
matchings for Roetzer et al. are computed at resolution of 450 triangles while matchings for all other methods are computed with resolu-
tion of 1000 triangles. (Bottom) Percentage of instances solved in certain time (in seconds). The values in legends are the percentage of
instances solved to global optimality for each method. Note that only Roetzer et al. and our approach are able to certify global optimality
(thus we put ”n/a” values for Cao et al., Ren et al. and Eisenberger et al.). Our approach outperforms Roetzer et al. w.r.t. runtime even
though shapes used by our method have more than 2x more triangles (1000 triangles for our method versus 450 triangles for Roetzer et al.).
(Conclusion) Considering all metrics, our method finds the best balances between matching performance, geometric consistency guaran-
tees and runtimes among all comptetitors and across all datasets.



9. Runtime Experiments
In Fig. 1 right, we show a runtime comparison of our
method, Roetzer et al. and Cao et al. We sample five random
pairs from the FAUST dataset and decimate the individual
shapes to the respective amount of triangles and measure
runtimes of the opimisation. The thick line is the mean run-
time among the five pairs at each individual resolution.

Furthermore, we show the percentage of instances solved
within a given runtime in Fig. 11 bottom. Even though our
method considers shapes with more than twice the amount
of triangles than the approach by Roetzer et al., we can see
that our approach is much faster than Roetzer et al. (which
is the only other method which guarantees geometric con-
sistency).

10. Implementation Details
We avoid severe discretisation artefacts by adding addi-
tional edges to the edges of the triangle meshes of respective
shapes X and Y , see Fig. 12 for an illustration. This has the
effect that the optimisation might find better shortest paths
which would otherwise not be within the feasible region of
problem 3 (i.e. due to different connectivity of neighbour-
ing vertices).

We note that Roetzer et al. [55] optimises for an elastic
energy consisting of a bending term (which compares cur-
vatures at vertices of both shapes) and a membrane term
(which penalises triangle deformations). This elastic en-
ergy does not perform as good as learned features and thus
we consider it an unfair comparison to our method which
utilises learned features. Hence, we replace the elastic en-
ergy originally proposed in [77] and adopted by [55] with
the same learned features [14] as used by our method (note
we compute feature differences for Roetzer et al. as shown
in [21]). We emphasise that this improves the approach by
Roetzer et al. w.r.t. runtime and matching performance.

Figure 12. Inspired by edge flipping for intrinsic Delaunay trian-
gulations (see [67]), we augment edges EX , EX with additional
edges (shown in yellow) that allow to directly reach the two-ring
neighbourhood from the blue vertex. We only add yellow edges
for pairs of triangles which are non-obtuse (i.e. all angles of both
triangles are smaller than ⇡).

11. Ablation: Resolution and Accuracy
In Fig. 13 (left), we qualitatively show a sphere with 50 tri-
angles matched to a sphere with 1000 triangles, as well as

a sphere with 100 triangles matched to a sphere with 1000
triangles, which showcases that our method can handle se-
vere discretisation differences. In Fig. 13 (right), we show
matching error using five instances from the FAUST dataset,
where we fix the resolution of the target shape to 1000 trian-
gles and match different resolutions of the source shape. We
observe that our method can handle a reasonable amount of
resolution differences.
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Figure 13. (Left) Qualitative results of matching a sphere with 50
triangles to a sphere with 1000 triangles, as well as matching a
sphere with 100 triangles respectively to a sphere with 1000 tri-
angles. (Right) Mean geodesic errors for our method when the
resolution of the target shape is fixed to 1000 triangles and the res-
olution of the source shape is varied.

12. Additional Qualitative Results
We show qualitative results of Roetzer et al. in Fig. 14
which complete the qualitative comparison of Fig. 6 in the
main paper.

Furthermore, in Fig. 15, we show failure cases of our
method. Our method does not result in any globally
wrong matchings (e.g. left-right flips happening for Eisen-
berger et al.). Yet, discretisation artefacts may lead to local
distortions especially visible if triangulation is transfered
from one shape to the other (cf. also Fig. 16).

Finally, in Fig. 16, we show qualitative results by trans-
fering triangulation from one shape to the other via the com-
puted matching. By doing so, geometric inconsistencies
can be detected more easily. We note that only methods
by Cao et al., Ren et al. and Eisenberger et al. can pro-
duce geometrically inconsistent solutions. Furthermore we
note that our method does (by definition, see Problem 3) not
lead to such inconsistencies and to instead leads to generally
smoother matchings (cf. also Fig. 11). For a full picture of
qualitative results, we include all qualitative results for all
methods on all datasets with triangulation transfer in the
supplementary material as html webpage.



1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11�

So
ur

ce
R

oe
tz

er
et

al
.

Figure 14. Qualitative comparison for Roetzer et al. Pairs in individual columns are identical to pairs in columns of Fig. 6 in main
paper. We note that we compute matchings for Roetzer et al. at 450 triangles (instead of 1000 triangles used for all other methods) to keep
runtimes manageable (cf. also Fig. 1 right).

Figure 15. Failure cases of our method. Even though our con-
straints ensure geometric consistency, discretisation artefacts may
lead to local triangle deformations (see arms for left shape pair or
legs for right shape pair) when transferring triangulation from one
shape to the other.
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Figure 16. Qualitative comparison of shapes from datasets FAUST, SMAL and DT4D with triangulation transfer (triangulation is trans-
fered via the computed matching). ”Source (HR)” is the source shape for Cao et al., Ren et al., Eisenberger et al. and ours decimated
to 1000 triangles while ”Source (LR)” is the source shape for Roetzer et al. decimated to 450 triangles (target shapes have 1000 and 450
triangles respecitvely). By transfering triangulation from one shape to the other via the computed matching we can see geometric incon-
sistencies of solutions by large deformed triangles (cf. 1�, 2�, 11� of Cao et al., 5�, 6� of Ren et al. and 10�, 11� of Eisenberger et al.). Such
deformations of triangles do not arise for Roetzer et al. and for our method since both methods can guarantee geometrically consistent
matchings. Despite Roetzer et al. producing visually the best results (especially when transfering triangulation), we note that it is the
slowest method among all competitors, even though shapes have less than 50% the amount of triangles compared to shapes used for all
other methods (450 versus 1000 triangles).
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