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Overview
In this supplementary material, we supply further explana-
tions and visualizations of our main paper “Edge-Aware 3D
Instance Segmentation Network with Intelligent Semantic
Prior”. We first explain more details about the implementa-
tion and large-scale datasets [1, 2, 6, 12] (Sec. 1). Also, we
provide more qualitative analysis for additional experimen-
tal results in diverse scenarios (Sec. 2).

1. Experimental Setup
1.1. Datasets

We train and evaluate the overall performance using four
landmark datasets for 3D instance segmentation: Scan-
NetV2 [6], ScanNet200 [12], S3DIS [1], and STPLS3D [2].
ScanNetV2. The ScanNetV2 [6] dataset consists of high-
quality, large-scale 3D point data with 1613 scenes from
various room types, including hotels, libraries, and offices.
It comprises 1201 scenes for the training, 312 for the valida-
tion, and 100 unseen in the training for the test. Each scene
is captured with RGB-D cameras and categorized with 20
classes of semantic and instance segmentation labels.
ScanNet200. To cover diverse real-world environments,
ScanNet200 [12] expands the original ScanNet [6] dataset
with fine-grained 200 categories. ScanNet200 enables a
more practical evaluation of how well methods can handle
less common instances (e.g. coat rack or candle) and chal-
lenging, long-tail distribution scenes. In our experiments,
we evaluate using 18 classes for ScanNetV2 and 198 classes
for ScanNet200, excluding wall and floor categories.
S3DIS. The S3DIS [1] dataset is another extensive bench-
mark, comprising 271 scenes from 6 areas within three dif-
ferent buildings. It is annotated with 13 semantic categories,
and we employ all these classes for evaluation. Following
the standard protocol [1, 8, 13], we report segmentation per-
formance on Area 5 (the scenes in Area 5 for validation and
the others for training) and 6-fold cross-validation.
STPLS3D. The STPLS3D [2] dataset is a large-scale aerial
photogrammetry dataset with real and synthetic 3D point
clouds. It includes 25 urban scenes covering 6 km², catego-
rized into 14 classes. Following [3, 17], we use scenes 5,
10, 15, 20, and 25 for evaluation and the rest for training.

1.2. Implementation Details

Using PyTorch deep learning framework, we implement our
experimental setup with the following settings. For Scan-
Net [6], we adopt a 5-layer U-Net [11] with five hierarchi-
cal resolutions as the backbone network, following [3, 7, 9,

14, 17]. The transformer decoder comprises 6 layers, each
with 8 heads, and we employ Fourier absolute position en-
coding [15] with the temperature set to 10,000. We train
our model for 512 epochs with a batch size of 4, using a
single RTX3090 GPU. For S3DIS [1] and STPLS3D [2],
we utilize Res16UNet34C of MinkowskiEngine [5] as the
feature backbone. Here, we utilize a modified transformer
decoder inspired by Mask2Former [4], where cross and
self-attention are swapped. This decoder layer leverages
8-headed attention and a feedforward network with 1024
dimensional features. We train our model for 600 epochs
with a batch size of 4, utilizing a single RTX A6000 GPU.
We apply the AdamW [10] optimizer with a learning rate of
2 ˆ 10´4 for all four datasets. We also utilize a polynomial
scheduler for ScanNet and a one-cycle scheduler for oth-
ers. During training, voxels are randomly sampled at fixed
numbers, whereas all voxels are used for evaluation. This
sampling strategy is not only memory-efficient but can also
serve as a dropout. We select the top 100 instances for eval-
uation according to the highest scores. Further, the nearest
points k and the threshold value τ are set to 20 and 5, re-
spectively, for dynamically extracting pseudo edge labels.

2. Additional Experimental Studies

Parameters for Pseudo Edge Label Calculation In this
section, we analyze the variations of dynamically gener-
ated pseudo edge labels based on key parameters (k and τ ).
To supervise the Edge Prediction Module, we first calcu-
late pseudo edge labels for all input 3D point cloud scenes.
As described in our main paper (Section 3.3), we compare
the instance labels of the central point with those of its k
neighbor points. Then, if the count of distinct label points
exceeds a predefined threshold value τ , we set the central
point as the edge label. Here, it is noteworthy that these
parameters (k and τ ) significantly influence the clarity and
thickness of the pseudo edges. Therefore, we perform qual-
itative examinations using various parameter values to gen-
erate the robust pseudo edge labels. As shown in Fig. 1 (row
1), we first fix the τ at 5 and experiment with different k val-
ues (10, 20, 30): a lower k (i.e., 10) results in incomplete
noisy edges, while a higher k (i.e., 30) thickens the edges
without fine details. Also, in the second row, we keep the k
at 20 and vary the τ values (2, 5, 10): if the τ is too large
(i.e., 10), the pseudo edge labels becomes insufficient, lack-
ing in details. Through these studies, we ultimately generate
useful pseudo edge labels with optimal parameters (k “ 20
and τ “ 5) for Edge Prediction Module optimization, en-
couraging the network to utilize edge-advanced features.
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Figure 1. Qualitative visualizations of pseudo edge labels with diverse parameters. In the first row, we visualize the pseudo edges (green)
with various neighboring points k at the fixed threshold value τ . The second row represents the effect of the threshold value τ at the fixed
neighboring points k. Here, we empirically observe that each parameter significantly impacts the quality of the pseudo edges. Note that we
ultimately calculate practical pseudo edge labels using optimal parameters (k “ 20 and τ “ 5) to supervise the Edge Prediction Module,
guiding the network to reduce misclassifications near edges with edge-aware features. Best viewed in color.
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Figure 2. t-SNE [16] visualizations of query features representing each instance. Compared to the existing state-of-the-art model MAFT [8],
which produces disorganized clusters for challenging instances with similar appearances, ours creates more distinctive clusters. Here, we
confirm that our Semantic Network effectively encourages the network to learn instance-specific semantic knowledge from intelligent text
embedding priors. Note that the color map (top right) represents semantic labels. Best viewed in color.

Significance of Semantic Priors. In addition to our main
paper (Section 4.4), we validate the efficacy of our sug-
gested Semantic Network. We present more comparative
t-SNE [16] visualizations of query features for diverse cases
of visually similar instances (e.g., window and curtain, bed

and sofa) in Fig. 2. The query features of the baseline model
(MAFT [8]) are wildly distributed without pattern, causing
challenges in identifying instances in feature space. This
issue is also evident in the category probability maps of
individual queries in Fig. 3. The MAFT queries struggle
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Figure 3. Category probability distribution of instance queries.
The x-axis denotes queries that represent corresponding instances
and the y-axis denotes categories. The baseline model (MAFT [8])
estimates categories with unclear and fuzzy low (light red) prob-
abilities. However, our model classifies instances with relatively
high (dark red) confidence of probabilities. Best viewed in color.

to estimate categories with clear probabilities, uncertainly
spread across multiple categories, leading to large duplica-
tions along the y-axis. To relieve this confusion, our Seman-
tic Network explicitly instructs the basic queries using text
embeddings to learn deep semantic details. Finally, ours
forms relatively clear and distinct clusters with highly confi-
dent instance queries. These impressive results highlight the
semantic recognition capabilities of our model, which pro-
ficiently leverages instance-specific semantic knowledge.
Visual Comparison. In this section, we present additional
qualitative visualization results of our framework EASE
against the existing state-of-the-art models, MAFT [8] and
Mask3D [13], in Fig. 4 and Fig. 5. For better comparison,
we also visualize yellow and green colored boxes to em-
phasize the critical differences in semantic (Sem.) and in-
stance (Inst.) results. First, as shown in Fig. 4, our model
outperforms existing methods in accurately classifying in-
stances with similar shapes (e.g., refrigerator and cabinet,
chair and sofa). These results demonstrate that context de-
tails from text embeddings can serve as intelligent seman-
tic insights for effectively perceiving complex 3D instances.
Furthermore, as shown in Fig. 5, in Scene8, Scene10, and
Scene11, our model consistently segments single objects as
a whole unit, unlike the baseline model, which tends to frag-
ment them into multiple parts. Also, our model accurately
distinguishes between objects situated closely, as illustrated
in Scene7, Scene9, and Scene12. These outcomes under-
score the effectiveness of our edge module, which enhances
the perception of the spatial range of diverse instances.
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Figure 4. Qualitative comparisons of 3D Instance Segmentation performance on the ScanNetV2 [6] validation set. We visualize semantic
(Sem.) masks of the baseline models (MAFT [8], Mask3D [13]) and ours with Ground Truth (GT) masks. The key differences are
highlighted using green-colored boxes for better comparison. Note that the color map (top right) represents semantic labels.
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Figure 5. Qualitative comparisons of 3D Instance Segmentation performance on the ScanNetV2 [6] validation set. We visualize instance
(Inst.) masks of the baseline models (MAFT [8], Mask3D [13]) and ours with Ground Truth (GT) masks. The key differences are
highlighted using yellow-colored boxes. Here, the color does not represent semantic classes but is used to distinguish different instances.
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