
Appendix

The appendix is organized as follows:
• Sec. A1 provides the complete proofs for the claims stated in the main paper.
• Sec. A2 includes additional implementation, runtime details, and memory consumption.
• Sec. A3 fully describes the augmentation settings used for image classification and semantic segmentation.
• Sec. A4 provides additional semantic segmentation qualitative results.
• Sec. A5 reports additional image classification results covering:

a. The robustness of our proposed models to out-of-distribution images (Sec. A5.1).
b. The sensitivity of our ViT models to input shifts of different magnitudes (Sec. A5.2).
c. The use of our proposed adaptive modules on pre-trained ViTs (Sec. A5.3).

A1. Complete proofs
A1.1. Proof of Lemma 1

Lemma 1. L-periodic shift-equivariance of tokenization.
Let input x ∈ RN have a token representation X(m)E ∈ R⌊N/L⌋×D. If x̂ = SNx (a shifted input), then its token

representation X̂(m)E corresponds to:

X̂(m)E = S⌊(m+1)/L⌋
⌊N/L⌋ X((m+1) mod L)E. (15)

This implies that x and x̂ are characterized by the same L token representations, up to a circular shift along the token index
(row index of X((m+1) mod L)E).

Proof. By definition:

X̂(m) = reshape(Sm
N x̂) = reshape(Sm+1

N x). (A27)

Let the input patches be expressed as X(m) =
[
r
(m)
0 . . . r

(m)
L−1

]
∈ R⌊N/L⌋×L, where r

(m)
k ∈ R⌊N/L⌋ is comprised by the

kth element of every input patch:

r
(m)
k [n] = (Sm

N x)[Ln+ k] = x[(Ln+ k +m) mod N ]. (A28)

More precisely, given a circularly shifted input with offset m, r(m)
k [n] represents the kth element of the nth patch. Based on

this, X̂(m) ∈ R⌊N/L⌋×L can be expressed as:

X̂(m) = reshape(Sm+1
N x) =

[
r
(m+1)
0 . . . r

(m+1)
L−1

]
, (A29)

with r
(m+1)
k [n] = x[(Ln+ k +m+ 1) mod N ]. (A30)

Expressed in terms of its quotient and remainder for divisor L, m+ 1 = ⌊m+1
L ⌋L+ (m+ 1) mod L. Then, r̂ corresponds to:

r̂
(m)
k [n] = x

[(
L

(
n+ ⌊m+ 1

L
⌋
)
+ (m+ 1) mod L+ k

)
mod N

]
. (A31)

It follows that r̂(m)
k = S⌊m+1

L ⌋
⌊N

L ⌋ r
((m+1) mod L)
k , which implies:

X̂(m)E = S⌊m+1
L ⌋

⌊N
L ⌋ X((m+1) mod L)E. (A32)



A1.2. Proof of Claim 1

Claim 1. Shift-equivariance of adaptive tokenization.
If F in Eq. (14) is shift-invariant, then A-token is shift-equivariant, i.e., ∃mq ∈ {0, . . . , L− 1} s.t.

A-token
(
SNx

)
= Smq

⌊N/L⌋A-token(x). (16)

Proof. Let x̂ = SNx ∈ RN be a circularly shifted version of input x ∈ RN . From Lemma 1, their token representations
satisfy:

X̂(m)E = S⌊m+1
L ⌋

⌊N
L ⌋ X((m+1) mod L)E. (A33)

Based on the selection criterion of A-token and Eq. (A33):

max
m∈{0,...,L−1}

F (X̂(m)E) = max
m∈{0,...,L−1}

F
(
S⌊m+1

L ⌋
⌊N

L ⌋ X((m+1) mod L)E
)

(A34)

= max
m∈{0,...,L−1}

F
(
X((m+1) mod L)E

)
, (A35)

where the right-hand side in Eq. (A35) derives from the shift-invariance property of F . Notice that for any integer m in the
range {0, . . . , L− 1}, the circular shift (m+ 1) mod L also lies within the same range. It follows that:

max
m∈{0,...,L−1}

F
(
X((m+1) mod L)E

)
= max

m∈{0,...,L−1}
F
(
X(m)E

)
. (A36)

Next, let X̂(m̂)E = A-token(x̂). Then, from Lemma 1:

max
m∈{0,...,L−1}

F
(
X̂(m)E) = F

(
X̂(m̂)E) = F

(
X((m̂+1) mod L)E). (A37)

Let X(m⋆)E = A-token(x). Then, From Eq. (A36) and Eq. (A37):

max
m∈{0,...,L−1}

F
(
X(m)E) = F

(
X((m̂+1) mod L)E), (A38)

which implies that m⋆ = (m̂+ 1) mod L. Finally, from Lemma 1 and Eq. (A38):

A-token(SNx) = S⌊ (m̂+1)
L ⌋

⌊N
L ⌋ X((m̂+1) mod L)E = S⌊ (m̂+1)

L ⌋
⌊N

L ⌋ A-token(x). (A39)

A1.3. Proof of Claim 2

Claim 2. If G in Eq. (19) is shift invariant, then A-WSA is shift-equivariant.

Proof. Let T ∈ RM and T̂ = SMT ∈ RM denote two token representations related by a circular shift. From the definition
of v(m)

W in Eq. (17), let v ∈ RM denote the average ℓp-norm (energy) of each group of W neighboring tokens in T . More
precisely, the k-th component of the energy vector v, denoted as v[k], is the energy of the window comprised by W neighboring
tokens starting at index k:

v[k] =
1

W

W−1∑
l=0

∥T(k+l) mod M∥p. (A40)

Similarly, following Eq. (18), let v(m)
W ∈ R⌊M

W ⌋ and v̂
(m)
W ∈ R⌊M

W ⌋ denote the energy vectors of non-overlapping windows
obtained after shifting T and T̂ by m indices, respectively. Then, maximizers m⋆ and m̂ satisfy:

m⋆ = argmax
m∈{0,...,W−1}

G
(
v
(m)
W

)
, m̂ = argmax

m∈{0,...,W−1}
G
(
v̂
(m)
W

)
. (A41)



Based on this, we prove that their adaptive window-based self-attention outputs are related by a circular shift that is a multiple
of the window size W , i.e., there exists m0 ∈ Z such that:

A-WSA(SMT ) = Sm0W
M A-WSA(T ). (A42)

Given the shifted input token representation T̂ = SMT , the energy of each group of W neighboring tokens corresponds to:

v̂[k] =
1

W

W−1∑
l=0

∥(SMT )(k+l) mod M∥p =
1

W

W−1∑
l=0

∥T(k+l+1) mod M∥p (A43)

= v[k + 1], (A44)

which implies v̂ = SMv. Then, v̂(m)
W can be expressed as:

v̂
(m)
W [k] = v̂[Wk +m] = v[Wk +m+ 1]. (A45)

Expressing m+ 1 in terms of its quotient and remainder for divisor W :

v̂
(m)
M [k] = v

[
W

(
k + ⌊m+ 1

W
⌋
)
+ (m+ 1) modW

]
(A46)

= S⌊m+1
W ⌋

⌊M
W ⌋ v

((m+1) mod W )
W . (A47)

Based on the shift-invariant property of G and the fact that (m+ 1) modW ∈ {0, . . . ,W − 1}, A-WSA selection criterion
corresponds to:

max
m∈{0,...,W−1}

G
(
v̂
(m)
W

)
= max

m∈{0,...,W−1}
G
(
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⌊M
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((m+1) mod W )
W

)
(A48)

= max
m∈{0,...,W−1}

G
(
v
((m+1) mod W )
W

)
(A49)

= max
m∈{0,...,W−1}

G
(
v
(m)
W

)
. (A50)

Then, from m̂ in Eq. (A41):

max
m∈{0,...,W−1}

G
(
v̂
(m)
W

)
= G

(
v̂
(m̂)
W

)
= G

(
v
((m̂+1) mod W )
W

)
, (A51)

which implies m⋆ = (m̂+ 1) modW . It follows that the adaptive self-attention of T̂ can be expressed as:

A-WSA(T̂ ) = WSA(Sm̂
M T̂ ) = WSA(Sm̂+1

M T ) (A52)

= WSA
(
S⌊(m̂+1)/W⌋W+m⋆

M T
)

(A53)

= WSA
(
S⌊(m̂+1)/W⌋W
M Sm⋆

M T
)
. (A54)

Since S⌊(m̂+1)/W⌋W
M corresponds to a circular shift by a multiple of the window size W :

A-WSA(T̂ ) = S⌊(m̂+1)/W⌋W
M WSA(Sm⋆

M T ), (A55)

where the right-hand side of Eq. (A55) stems from the fact that, for WSA with a window size W , circularly shifting the input
tokens by a multiple of W results in an identical circular shift of the output tokens. Finally, from the definition of adaptive
self-attention in Eq. (19):

A-WSA(T̂ ) = Sm0W
M A-WSA(T ), m0 = ⌊(m̂+ 1)/W ⌋. (A56)

Claim 2 shows that A-WSA induces an offset between token representations that is a multiple of the window size W .
As a result, windows are comprised by the same tokens, despite circular shifts. This way, A-WSA guarantees that an input
token representation and its circularly shifted version are split into the same token windows, leading to a circularly shifted
self-attention output.



A1.4. Proof of Claim 3

Claim 3. PMerge corresponds to a strided convolution with D̃ output channels, striding P and kernel size P .

Proof. Let the input tokens be expressed as T =
[
t0 . . . tD−1

]
∈ RM×D, where tj ∈ RM is comprised by the jth

element of every input token. This implies that, given the lth token Tl ∈ RD, Tl[j] = tj [l]. Then, the patch merging output
Z =

[
z0 . . . zD̃−1

]
can be expressed as:

Z = PMerge(T ) = D(P )(Y ) ∈ R
M
P ×D̃, (A57)

where D(P ) ∈ RM
P ×M is a downsampling operator of factor P , and Y =

[
y0 . . . yD̃−1

]
∈ RM×D̃ is the output of a

convolution sum with kernel size P and D̃ output channels:

yk =

D−1∑
j=0

tj ⊛ h(k,j) ∈ RM , (A58)

where ⊛ denotes circular convolution and h(k,j) =
[
h
(k,j)
0 . . . h

(k,j)
P−1

]⊤
∈ RP denotes a convolutional kernel. Note that

the convolution sum in Eq. (A58) involves D · D̃ kernels, given that k ∈ {0, . . . , D̃ − 1} and j ∈ {0, . . . , D − 1}. Without
loss of generality, assume the number of input tokens M is divisible by the patch length P . Then, due to the linearity of the
downsampling operator, zk ∈ RM

P corresponds to:

zk =

D−1∑
j=0

D(P )
(
tj ⊛ h(k,j)

)
. (A59)

Let H(k,j) ∈ RM×M be a convolutional matrix representing kernel h(k,j):

H(k,j) =


h
(k,j)
0 · · · h

(k,j)
P−1

h
(k,j)
0 · · · h

(k,j)
P−1

. . .
· · · h

(k,j)
P−1 · · · h

(k,j)
0

 . (A60)

Then, note that each summation term in Eq. (A59) can be expressed as a matrix-vector multiplication:

zk =

D−1∑
j=0

H̃(k,j)tj , (A61)

where H̃(k,j) = D(P )H(k,j) ∈ RM
P ×M corresponds to the convolutional matrix H(k,j) downsampled by a factor P along

the row index:

H̃(k,j) =


h
(k,j)
0 · · · h

(k,j)
P−1

h
(k,j)
0 · · · h

(k,j)
P−1

. . .
h
(k,j)
0 · · · h

(k,j)
P−1

 . (A62)

Based on this, the convolution sum in Eq. (A59) can be expressed in matrix-vector form as:

zk =
[
H̃(k,0) · · · H̃(k,D−1)

]  t0
...

tD−1

 . (A63)



Then, from the patch representation of T in Eq. (10), zk can be alternatively expressed as:

zk = T̃ ẽk, (A64)

where ẽk is the kth column of Ẽ =
[
ẽ0 · · · ẽD̃−1

]
∈ RPD×D̃. Let vec(T̄ (k)

P ) ∈ RPD operate in a column-wise manner:

vec(T̄ (k)
P ) = vec

( [
TPk . . . TP (k+1)−1

]⊤ )
(A65)

=
[
TPk[0] · · · TP (k+1)−1[0] TPk[1] · · · TP (k+1)−1[1] · · · TP (k+1)−1[D − 1]

]⊤
(A66)

=
[
t0[Pk] · · · t0[P (k + 1)− 1] t1[Pk] · · · t1[P (k + 1)− 1] · · · tD−1[P (k + 1)− 1]

]⊤
. (A67)

Finally, from Eq. (A63), ẽk is equivalent to

ẽk =
[
h(k,0) ; . . . ; h(k,D−1)

]
∈ RDP , (A68)

which shows that PMerge(T ) = T̃ Ẽ ∈ RM
P ×D̃ can be expressed as a convolution sum with kernels comprised by columns

of Ẽ.

Claim 3 shows that the original patch merging function PMerge is equivalent to projecting all M overlapping patches of
length P , which can be expressed as a circular convolution, followed by keeping only M

P of the resulting tokens. Note that the
selection of such tokens is done via a downsampling operation of factor P , which is not the only way of selecting them. In fact,
there are P different token representations that can be selected, as explained in Sec. 4.

Based on this observation, the proposed A-PMerge leverages the polyphase decomposition to select token representations
in a data-adaptive manner, resulting in a circularly shift-equivariant patch merging scheme. Notably, while A-PMerge utilizes
APS [3] and LPF [55] to inherently achieve shift equivariance (as explained in Section 4), the use of antialiasing filters is
not strictly necessary for the core equivariance. The polyphase sampling itself guarantees perfect circular shift consistency.
However, following the design of APS, we incorporate antialiasing filters in practice, as they have been shown to improve
downstream task performance.

A2. Additional implementation details
We have attached our code in the supplementary materials. We now provide an illustration of how to use our implementation
and verify that the proposed modules are indeed circularly shift-equivariant.

A2.1. A-pmerge usage

We show a toy example of how to use the adaptive patch merging layer (A-pmerge) by building a simple image classifier.
The model is comprised by an A-pmerge layer, which includes a linear embedding, followed by a global average pooling
layer and finally a linear classification head. We empirically show that this simple model is circularly shift-invariant.

# A-pmerge based classifier
class ApmergeClassifier(nn.Module):
def __init__(
self,stride,input_resolution,
dim,num_classes=4,conv_padding_mode='circular'

):
super().__init__()
self.stride=stride
# Pooling layer for A-pmerge
pool_layer = partial(

PolyphaseInvariantDown2D,
component_selection=max_p_norm,
antialias_layer=None,

)
# A-pmerge



# No adaptive window selection
# for illustration purposes
self.apmerge = AdaptivePatchMerging(

input_resolution=input_resolution,
dim=dim,
pool_layer=pool_layer,
conv_padding_mode=conv_padding_mode,
stride=stride,
window_selection=None,
window_size=None,

)
# Global pooling and head
self.avgpool=nn.AdaptiveAvgPool2d((1,1))
self.fc=nn.Linear(dim*stride,num_classes)

def forward(self,x):
# Reshape
B,C,H,W = x.shape
x = x.permute(0,2,3,1).reshape(B,H*W,C)
# Adaptive patch merge
x = self.apmerge(x)
# Reshape back
x = x.reshape(

B,H//self.stride,W//self.stride,C*self.stride,
).permute(0,3,1,2)
# Global average pooling
x = torch.flatten(self.avgpool(x),1)
# Classification head
x = self.fc(x)
return x

# Input tokens
B,C,H,W = 1,3,8,8
stride = 2
x = torch.randn(B,C,H,W).cuda().double()
# Shifted input
shift = torch.randint(-3,3,(2,))
x_shift = torch.roll(input=x,dims=(2,3),shifts=(shift[0],shift[1]))
# A-pmerge classifier
model = ApmergeClassifier(

stride=stride,
input_resolution=(H,W),
dim=C).cuda().double().eval()

# Predict
y = model(x)
y_shift = model(x_shift)
err = torch.norm(y-y_shift)
assert(torch.allclose(y,y_shift))
# Check circularly shift invariance
print('y: {}'.format(y))
print('y_shift: {}'.format(y_shift))
print("error: {}".format(err))



Out:

y : t e n s o r ( [ [ − 0 . 1 8 7 8 , 0 . 2 3 4 8 , 0 . 0 9 8 2 , − 0 . 2 1 9 1 ] ] ,
d e v i c e = ' cuda : 0 ' , d t y p e = t o r c h . f l o a t 6 4 ,
g r a d _ f n =<AddmmBackward0 >)

y _ s h i f t : t e n s o r ( [ [ − 0 . 1 8 7 8 , 0 . 2 3 4 8 , 0 . 0 9 8 2 , − 0 . 2 1 9 1 ] ] ,
d e v i c e = ' cuda : 0 ' , d t y p e = t o r c h . f l o a t 6 4 ,
g r a d _ f n =<AddmmBackward0 >)

e r r o r : 0 . 0

A2.2. Simple encoder-decoder usage

To illustrate the use of our adaptive layers for semantic segmentation purposes, we demonstrate the use of the A-PMerge’s
optimal indices and the A-WSA’s optimal offset for unpooling purposes. We build a simple encoder-decoder based on an
A-PMerge layer equipped with A-WSA (implemented as poly_win in the example code) to encode input tokens, followed
by an unpooling module to place features back into their original positions at high resolution.

This example depicts the strategy used by our proposed semantic segmentation models, where backbone indices are passed
to the segmentation head to upscale feature maps in a consistent fashion, leading to a circularly shift-equivariant model.

# Simple encoder-decoder
class EncDec(nn.Module):
def __init__(self,dims,stride,win_sel,win_sz,pad):

super().__init__()
self.pad = pad
self.stride = stride
self.win_sz = win_sz

# A-pmerge equipped with A-WSA
pool_layer = get_pool_method(name='max_2_norm',antialias_mode='skip')
self.apmerge = AdaptivePatchMerging(

dim=dims,
pool_layer=pool_layer,
conv_padding_mode=pad,
stride=stride,
window_size=win_sz,
window_selection=win_sel,

)
# Unpool
unpool_layer = get_unpool_method(unpool=True,pool_method='max_2_norm',

antialias_mode='skip')
self.unpool = set_unpool(unpool_layer=unpool_layer,stride=stride,

p_ch=dims)

def forward(self,x,hw_shape):
B,C,H,W = x.shape
# Reshape
x = x.permute(0,2,3,1).reshape(B,H*W,C)
# A-pmerge + A-WSA
x_w,hw_shape,idx = self.apmerge(x=x,hw_shape=hw_shape,ret_indices=True)
# Keep merging and windowing indices
idx = idx[:3]
# Reshape back
x_w = x_w.reshape(



B,H//self.stride,W//self.stride,C*self.stride).permute(0,3,1,2)
# Unroll and Unpool
y = unroll_unpool_multistage(

x=x_w,
scale_factor=[self.stride],
unpool_layer=self.unpool,
idx=[idx],
unpool_winsel_roll=self.pad,

)
return y

# Input
B,C,H,W = 1,3,28,28
shift_max = 6
x = torch.randn(B,C,H,W).cuda().double()
# Offsets
s01 = torch.randint(low=-shift_max,high=shift_max,size=(1,2)).tolist()[0]
s02 = torch.randint(low=-shift_max,high=shift_max,size=(1,2)).tolist()[0]
s03 = [s02[0]-s01[0],s02[1]-s01[1]]
# Shifted inputs
x01 = torch.roll(x,shifts=s01,dims=(-1,-2))
x02 = torch.roll(x,shifts=s02,dims=(-1,-2))
# Build encoder-decoder
# Use A-WSA (poly_win)
model = EncDec(dims=3,stride=2,pad='circular',win_sz=7,win_sel=poly_win,

).cuda().double().eval()
# Predictions
y01 = model(x01,hw_shape=(H,W))
y02 = model(x02,hw_shape=(H,W))
# Shift to compare
z = torch.roll(y01,shifts=s03,dims=(-1,-2))
err = torch.norm(z-y02)
assert torch.allclose(z,y02)
print("torch.norm(z-y02): {}".format(err))

Out:

t o r c h . norm ( z−y02 ) : 0 . 0

A2.3. Memory Consumption

We compare the computational requirements of our adaptive Vision Transformer models and their default versions in terms of
training and inference GPU memory. We report memory consumption on a single NVIDIA Quadro RTX 5000 GPU, where
both training and inference are performed using batch size 64 and the default image size per model.

Following previous work [12, 24, 25], we compare the allocated GPU memory required by each model via NVIDIA’s
torch.cuda.max_memory_allocated() command. This measures the maximum GPU memory occupied by tensors
since the beginning of the executed program. Additionally, we report the maximum reserved GPU memory, as assigned by the
CUDA memory allocator, using the torch.cuda.max_memory_reserved() command. This measures the maximum
memory occupied by tensors plus the extra memory reserved to speed up allocations. The required memory is reported in
Megabytes (1 MiB = 220 bytes). We also report the relative change, which corresponds to the memory increase with respect to
the default models.

Tab. A1 shows the memory required for training and inference for each of our adaptive models and their default versions.



Model
Training Inference

Max. Allocated Memory (MiB) Max. Reserved Memory (MiB) Max. Allocated Memory (MiB) Max. Reserved Memory (MiB)

Swin-T 4, 935 5, 380 1, 012 1, 352
A-Swin-T (Ours) 5, 178 (+4.92%) 5, 678 (+5.54%) 1, 012 (0%) 1, 382 (+2.22%)

SwinV2-T 7, 712 8, 016 1, 275 1, 544
A-SwinV2-T (Ours) 8, 113 (+5.2%) 8, 710 (+8.66%) 1, 275 (0%) 1, 534 (−0.65%)

CvT-13 5, 794 6, 044 1, 587 1, 850
A-CvT-13 (Ours) 6, 257 (+7.99%) 6, 528 (+8.01%) 1, 587 (0%) 1, 780 (−3.78%)

MViTv2-T 6, 335 7, 352 1, 944 3, 356
A-MViTv2-T (Ours) 7, 364 (+16.24%) 8, 456 (+15.02%) 2, 164 (+11.32%) 3, 378 (+0.67%)

Table A1. Memory Consumption: Maximum allocated and reserved memory required by our adaptive ViTs and their default versions.
Training and inference memory consumption is calculated on a single NVIDIA Quadro RTX 5000 GPU (batch size 64, default image size
per model), and reported in Megabytes (MiB). We also report the relative change with respect to the default models (%), which is shown in
parentheses.

Train Set Test Set

Size Preprocessing
(i) Resize (Swin, MViTv2, CvT: 256× 256. SwinV2: 292× 292)

(ii) Center Crop (Swin, MViTv2, CvT: 224× 224, SwinV2: 256× 256)

Augmentation
(i) Random Horizontal Flipping

(ii) Normalization
Normalization

Table A2. Image Classification preprocessing (circular shifts). Data preprocessing and augmentation used to train and test all default and
adaptive ViTs under circular shifts.

In terms of training, our adaptive framework marginally increases the allocated memory requirements up to 16% for MViTv2,
while the rest of the models increase the memory requirements by less than 8%. This trend is also seen in the reserved memory,
where it increases up to 15%. Additionally, in terms of inference, only our adaptive MViTv2 model marginally increases the
allocated memory by 11%, while the rest of our adaptive models do not increase the required allocated memory. In terms of
reserved memory, our adaptive models increase the requirement at most by 2%, while in some cases the reserved memory
decreases by 3%.

Overall, the training memory consumption marginally increases with respect to the default models, while the inference
memory consumption remains almost unaffected.

A3. Additional experimental details

A3.1. Image classification

Data pre-processing (ImageNet circular shifts, CIFAR10/100). Similar to previous work on circularly shift-equivariant
CNNs [3, 34], to highlight the fact that perfect shift-equivariance is imposed by design and not induced during training, no
shift or resizing augmentation is applied. Tab. A2 includes the data pre-processing used in our ImageNet experiments under
circular shifts, and in all our CIFAR10/100 experiments. As explained in Sec. 5.2, input images are transformed to match the
default image size used by each model. This process is denoted as Size pre-processing in the table.
Data pre-processing (ImageNet standard shifts). In contrast to the circular shift scenario, each model uses its default data
augmentation configuration for the ImageNet standard shift scenario. Tables A3, A4 and A5 include the augmentation details
of each model, A-Swin, A-SwinV2, A-MViTv2, and A-CVT respectively. Similar to the circular shift case, all models use a
data pre-processing step to change the input image size.

Note that all four models use RandAugment [6] as data augmentation pipeline, which includes: AutoContrast,
Equalize, Invert, Rotate, Posterize, Solarize, ColorIncreasing, ContrastIncreasing,
BrightnessIncreasing, SharpnessIncreasing, Shear-x, Shear-y, Translate-x, and Translate-y.
Computational settings. CIFAR10/100 classification experiments using all four models were trained on two NVIDIA Quadro
RTX 5000 GPUs with a batch size of 48 images for 100 epochs. On the other hand, ImageNet classification experiments were
trained on eight NVIDIA A100 GPUs, where all models used their default effective batch size and numerical precision for 300
epochs.



Train Set Test Set

Size Preprocessing
(i) Resize (Swin: 256× 256, SwinV2: 292× 292)

(ii) Center Crop (Swin: 224× 224, SwinV2: 256× 256)

Augmentation

(i) Random Horizontal Flipping
(ii) RandAugment

(magnitude: 9
increase severity: True,

augmentations per image: 2,
standard deviation: 0.5)

(iii) Normalization
(iv) RandomErasing

Normalization

Table A3. Swin / SwinV2 Image Classification preprocessing (standard shifts). Data preprocessing and augmentation used to train and
test the default (Swin, SwinV2) and adaptive (A-Swin, A-SwinV2) models.

Train Set Test Set

Size Preprocessing
(i) Resize (256× 256)

(ii) Center Crop (224× 224)

Augmentation

(i) Random Horizontal Flipping
(ii) RandAugment

(magnitude: 10
increase severity: True,

augmentations per image: 6,
standard deviation: 0.5)

(iii) Normalization
(iv) RandomErasing

Normalization

Table A4. MViTv2 Image Classification preprocessing (standard shifts). Data preprocessing and augmentation used to train and test the
default (MViTv2) and adaptive (A-MViTv2) models.

Train Set Test Set

Size Preprocessing
(i) Resize (256× 256)

(ii) Center Crop (224× 224)

Augmentation

(i) Random Horizontal Flipping
(ii) RandAugment

(magnitude: 9
increase severity: True,

augmentations per image: 2,
standard deviation: 0.5)

(iii) Normalization
(iv) RandomErasing

Normalization

Table A5. CvT Image Classification preprocessing (standard shifts). Data preprocessing and augmentation used to train and test the
default (CvT) and adaptive (A-CvT) models.

A3.2. Semantic Segmentation

Data pre-processing (Circular shifts). For Swin+UperNet, both the baseline and adaptive (A-Swin) models were trained
by resizing input images to size 1, 792 × 448 followed by a random cropping of size 448 × 448. Next, the default data
augmentation used in the Swin + UperNet model is used. During testing, input images are resized to 1792 × 448. Then,
each dimension size is rounded up to the next multiple of 224. Tab. A6 describes the pre-processing and data augmentation
pipelines.

For Swin-V2+UperNet, both the baseline and the adaptive (A-SwinV2) models were trained by resizing input images to
size 2, 048× 512 followed by a random cropping of size 512× 512. Following this, the default data augmentation used in the



Swin + UperNet model is adopted. During testing, input images are resized to 2, 048 × 512. Then, each dimension size is
rounded up to the next multiple of 256. Tab. A7 describes the pre-processing and data augmentation pipelines.

Train Set Test Set

Size Preprocessing
(i) Resize: 1, 792× 448

(ii) Random Crop: 448× 448
(i) Resize: 1, 792× 448

(ii) Resize to next multiple of 224

Augmentation
(i) Random Horizontal Flipping

(ii) Photometric Distortion
(iii) Normalization

Normalization

Table A6. Swin + UperNet Semantic Segmentation preprocessing (circular shifts). Data preprocessing and augmentation used to train
and test the default (Swin+UperNet) and adaptive (A-Swin+UperNet) models.

Train Set Test Set

Size Preprocessing
(i) Resize: 2, 048× 512

(ii) Random Crop: 512× 512
(i) Resize: 2, 042× 512

(ii) Resize to next multiple of 256

Augmentation
(i) Random Horizontal Flipping

(ii) Photometric Distortion
(iii) Normalization

Normalization

Table A7. SwinV2 + UperNet Semantic Segmentation preprocessing (circular shifts). Data preprocessing and augmentation used to
train and test the default (SwinV2+UperNet) and adaptive (A-SwinV2+UperNet) models.

Data pre-processing (Standard Shifts). For the Swin+UperNet baseline and adaptive models, the default pre-processing
pipeline from the official MMseg implementation [5] was used. The same pipeline was used to evaluate the SwinV2+UperNet
baseline and adaptive models. The pre-processing pipeline is detailed in Tab. A8.
Computational settings. ADE20K semantic segmentation experiments using Swin and SwinV2 models, both adaptive and
baseline architectures, were trained on four NVIDIA A100 GPUs with an effective batch size of 16 images for 160, 000
iterations. These settings are consistent with the official MMSeg configuration for the Swin+UperNet model.

A4. Additional semantic segmentation results
Fig. A1 and A2 show examples of semantic segmentation predicted masks for our A-Swin+UperNet and A-SwinV2+Upernet
models, respectively. Illustrations include masks obtained with their corresponding baselines, showing the improved robustness
of our models against input shifts.

A5. Additional image classification experiments
A5.1. Robustness to out of distribution images

Similar to work in network robustness [15, 35, 38, 53], we evaluate the image classification performance of our adaptive
models on out-of-distribution inputs. More precisely, we measure the robustness of our proposed A-Swin-T model to images
with randomly erased patches and vertically flipped images.
Experiment Setup. Following the evaluation protocol of Chaman and Dokmanic [3], we compare the performance of three
versions of Swin-T: (i) its default model, (ii) our proposed adaptive model (A-Swin-T), and (iii) the default Swin-T architecture
trained on circularly shifted images, denoted as Swin-T DA (data augmented).

All three models are trained on CIFAR-10. Swin-T and A-Swin-T use the default data pre-processing used for CIFAR-10
(refer to Sec. A3), while Swin-T DA uses the default pre-processing plus circular shifts with offsets uniformly selected between
−224 and 224 pixels. Note that CIFAR-10 samples are resized from 32× 32 to 224× 224 pixels during pre-processing. So,
the circular offsets are effectively selected between −32 and 32 pixels.

During testing, the patch size is randomly selected between 0 and max, where max ∈ {28, 42, 56, 70} pixels. Since
CIFAR-10 samples are rescaled to 224 x 224 pixels, the maximum patch sizes are effectively {4, 6, 8, 10} pixels.
Results. Tab. A9 shows the top-1 classification accuracy and circular shift consistency of the three Swin-T models of interest
on images with randomly erased patches. Across patch sizes, while the default model and Swin-T DA decrease their shift



Train Set Test Set

Size Preprocessing
(i) Resize: 2, 048× 512

(ii) Random Crop: 512× 512
Resize: 2, 048× 512

Augmentation
(i) Random Horizontal Flipping

(ii) Photometric Distortion
(iii) Normalization

Normalization

Table A8. Semantic Segmentation preprocessing (standard shifts). Data preprocessing and augmentation used to train and test the default
and adaptive versions of both SwinV2+UperNet and A-SwinV2+UperNet models.

Model max = 0 max = 28 max = 42 max = 56 max = 70
Acc. C-Cons. Top-1 Acc. C-Cons. Top-1 Acc. C-Cons. Top-1 Acc. C-Cons. Top-1 Acc. C-Cons.

Swin-T (Default) 90.21 82.69 90.16 81.75 89.71 81.42 89.02 80.4 87.83 79.58
Swin-T DA 92.32 94.3 91.81 94.19 91.6 94.16 90.42 93.01 89.23 92.73

A-Swin-T (Ours) 93.53 100 93.27 100 92.71 100 91.57 100 90.3 100

Table A9. Performance on images with randomly erased patches. Top-1 classification accuracy (%) and circular shift consistency (%) on
CIFAR-10 test images with randomly erased square patches. Max corresponds to the largest possible patch size, as sampled from a uniform
distribution U{0,max}.

Model Unflipped Flipped
Top-1 Acc.(%) C-Cons.(%) Top-1 Acc.(%) C-Cons.(%)

Swin-T (Default) 90.21 82.69 50.41 82.24
Swin-T DA 92.32 94.3 51.74 94.67

A-Swin-T (Ours) 93.53 100 52.07 100

Table A10. Performance on flipped images. Top-1 classification accuracy and circular shift consistency on vertically flipped CIFAR-10 test
images.

consistency by at least 1.5%, our A-Swin-T preserves its perfect circular shift consistency. Our adaptive model also gets the
best classification accuracy in all cases, improving by more than 1%. This suggests that, despite not being explicitly trained
on this transformation, our A-Swin model is more robust than the default and DA models, obtaining better accuracy and
consistency across scenarios.

On the other hand, Tab. A10 shows the circular shift consistency and classification accuracy of the three Swin models
evaluated under vertically flipped images. Even in such a challenging case and without any fine-tuning, our A-Swin-T model
retains its perfect circular shift consistency, improving over the default and data-augmented models by at least 5%. Our
adaptive model also outperforms the default and data-augmented models in terms of classification accuracy, both on flipped
and unflipped images, by a significant margin.

A5.2. Sensitivity to input shifts

To measure the shift consistency improvement of our proposed adaptive models over the default ones, we conduct a fine-grained
evaluation of shift consistency by analyzing different offset magnitudes.
Experiment setup. We test the shift sensitivity of our four proposed adaptive ViTs on CIFAR-10. Circular shift consistency is
evaluated on images shifted by an offset randomly selected from four different ranges: [0, 56], [0, 112], [0, 168], and [0, 224]
pixels. Note that CIFAR-10 images are resized from 32× 32 to 224× 224 pixels. So, the effective intervals correspond to
[0, 8], [0, 16], [0, 24], and [0, 32] pixels, respectively. By gradually increasing the offset magnitude, we can understand the
advantages of our adaptive models over their default versions in a more general manner.
Results. Tab. A11 shows the circular shift consistency of all four models under different shift magnitudes. While the default
versions monotonically decrease their shift consistency with respect to the offset magnitude, our method shows a perfect shift
consistency across scenarios.

Despite the strong consistency obtained by default ViTs via data augmentation, our adaptive models outperform them by
more than 9% without any fine-tuning. This shows the benefits of our adaptive models, regardless of the shift magnitude.



Model Offset ∈ {0, . . . , 8} Offset ∈ {0, . . . , 16} Offset ∈ {0, . . . , 24} Offset ∈ {0, . . . , 32}

Swin-T 92.00± .23 89.65± .9 88.93± .09 88.13± .14
A-Swin-T (Ours) 100 100 100 100

SwinV2-T 92.13± .04 90.43± .17 89.67± .08 88.75± .15
A-SwinV2-T (Ours) 100 100 100 100

CvT-13 88.99± .1 87.42± 0.16 86.96± .1 86.84± .06
A-CvT-13 (Ours) 100 100 100 100

MViTv2-T 91.49± .04 90.57.± .11 90.46± .08 90.22± .1
A-MViTv2-T (Ours) 100 100 100 100

Table A11. Consistency under different shift magnitudes. Circular shift consistency (%) of our adaptive ViT models under small, medium,
large, and very large shifts. Models trained and evaluated on CIFAR-10 under a circular shift assumption.

Model Top-1 Acc.(%) C-Cons.(%)

CvT-13 (Default) 90.12 76.54
CvT-13 + Adapt (No Fine-tuning) 57.4 100

CvT-13 + Adapt (10 epoch Fine-tuning) 91.72 100
CvT-13 + Adapt (20 epoch Fine-tuning) 92.35 100

A-CvT-13 (Ours) 93.87 100

Table A12. Incorporating shift-equivariant modules on pre-trained ViTs. Our shift-equivariant ViT framework allows plugging-in shift
equivariant modules on pre-trained models (e.g. CvT-13), improving on classification accuracy after a few fine-tuning iterations while
preserving its perfect shift consistency. Results shown on CvT-13 trained on CIFAR-10 under a circular shift assumption.

A5.3. Replacing adaptive modules in pre-trained ViTs

We ran additional experiments plugging in our proposed adaptive modules on pre-trained default ViTs. Notice that, while
replacing default ViT modules with adaptive ones guarantees a circularly shift-equivariant model (100% shift consistency), it
is expected for the classification accuracy to decrease since the pre-trained weights have not been trained to adaptively select
different token or window representations. Nevertheless, we are interested in exploring this scenario as a refined initialization
strategy, in order to evaluate its effect in terms of classification accuracy and shift consistency.
Experiment setup. Given a default CvT-13 model trained on CIFAR-10, we replace its components with our proposed
framework. We denote this model as CvT-13 + Adapt. Next, we fine-tune the model for 10 and 20 epochs and evaluate its
top-1 classification accuracy as well as circular shift consistency.
Results. Tab. A12 shows the top-1 classification accuracy and circular shift consistency of CvT-13 + Adapt, as well as the
default CvT-13 and our proposed A-CvT-13 model. Without any fine-tuning, CvT-13 + Adapt attains perfect circular shift
consistency just by plugging in our proposed adaptive modules. However, its top-1 classification accuracy decreases by more
than 30% with respect to the default model. By fine-tuning the model for 10 and 20 epochs, its classification accuracy boosts
up to 91.72% and 92.35%, respectively. This implies that CvT-13 + Adapt is capable of outperforming the default model both
in consistency and accuracy by plugging in our adaptive components plus a few fine-tuning iterations.

On the other hand, while promising results are obtained via fine-tuning, our adaptive model A-CvT-13, fully trained for 90
epochs using random initialization and the default training settings, still attains the best classification accuracy and circular
shift consistency results.



Image Shifted Image Swin + UperNet Predictions A-Swin + UperNet Predictions (Ours)

Figure A1. Swin + UperNet Semantic Segmentation under standard shifts: Semantic segmentation results on the ADE20K dataset
(standard shifts) via Swin backbones: Our A-Swin + UperNet model is more robust to input shifts than the original Swin + UperNet model,
generating consistent predictions while improving accuracy. Examples of prediction changes due to input shifts are boxed in yellow.



Image Shifted Image SwinV2 + UperNet Predictions A-SwinV2 + UperNet Predictions (Ours)

Figure A2. SwinV2 + UperNet Semantic Segmentation under standard shifts: Additional semantic segmentation results on the ADE20K
dataset (standard shifts) via SwinV2 backbones: Our adaptive model improves both segmentation accuracy and shift consistency with respect
to the original SwinV2 + UperNet model. Examples of prediction changes due to input shifts are boxed in yellow.
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