
Supplementary material for ‘RepKPU: Point Cloud Upsampling with Kernel
Point Representation and Deformation’
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Figure 1. (a) Details of dense block (DB), where VA indicates
vector attention mechanism [11]. (b) Details of our encoder.

A. Encoder
We show the complete details of our encoder in Figure 1.
There are no downsampling operations in the encoder. The
process of vector attention mechanisms [11] is as follows:
Given coordinates P ∈ RN×3 and current features Fa ∈
RN×Ce , we first adopt three linear layers to project Fa to
Q ∈ RN×Ce , K ∈ RN×Ce , and V ∈ RN×Ce , respectively.
Then we conduct feature aggregation like:

aij = MLP1
Ce→Ce

(qi − kj) +MLP2
3→Ce

(pi − pj), j ∈ knn(pi),

(1)

f
′

i = Conv
Ce→Ce

(
∑

j∈knn(pi)

exp(aij)∑
j∈knn(pi)

exp(aij)
⊙ vj) + fi,

(2)
where, qi ∈ Q, kj ∈ K, vj ∈ V , pi ∈ P , and fi ∈ Fa.
Conv indicates a linear projection. Fb = {f ′

i} is the output
of VA operation. All the addition, division, and multiplica-
tion operations are element-wise.

We replace vector attention mechanisms with graph con-
volutions [8] to build another encoder. Instead of using k-
nn searching in the feature space, we use it in the geometric
space:

f
′

i = Conv
Ce→Ce

(MaxPooling
j∈knn(pi)

MLP
2Ce→Ce

(cat(fi, fj − fi))) + fi.

(3)
We also construct a variant of the encoder based on Set

Abstraction [4]:

f
′

i = Conv
Ce→Ce

(MaxPooling
j∈knn(pi)

MLP
Ce+3→Ce

(cat(fj ,pj−pi)))+fi.

(4)

B. Cross-attention Transformer
Before feeding Fq and Fk into transformer, we first project
them to Fq′ ∈ RNq×Cd and Fk′ ∈ RNk×Cd with two linear
layers. We define the input query vectors of the i-th cross-
attention layer as F i

q . Note that F0
q = Fq′ . Following [7],

we then obtain Qi, Ki, and Vi via linear projection layers.

Qi,Ki,Vi = Conviq
Cd→Cd

(F i
q),Conv

i
k

Cd→Cd

(Fk′),Conviv
Cd→Cd

(Fk′). (5)

Next, features are aggregated in a multi-head manner:

Ai = cat(Ai
0,Ai

1, ...,Ai
h−1),Ai

j = Attention(Qij ,Kij ,Vij),
(6)

here, h indicates the number of head, and we set h = 4.
Finally, with residual connections and FFN (i.e., MLP), the
i-th cross-attention layer outputs F i+1

q :

Bi = Ai + F i
q,F i+1

q = FFN
Cd→Cd

(Bi) + Bi. (7)

After passing through transformer, KP-Queries are con-
verted into displacement features Fd, where Fd = F3

q .

C. Loss Function
Given ground-truth point cloud Pgt ∈ RNgt×3 and upsam-
pled point cloud Pu ∈ RNu×3, the CD loss (Lcd) is formu-
lated as:

Lcd =
1

Nu

∑
a∈Pu

min
b∈Pgt

∥a− b∥+ 1

Ngt

∑
b∈Pgt

min
a∈Pu

∥b− a∥.

(8)
For each center point p ∈ P , we will search for its local
positions Pr and subsequently get the positions of RepK-
Points Pk. If unrestricted, the positions of RepKPoints will
be pulled away from the input points, and the model sub-
sequently cannot perceive any geometry. The same phe-
nomenon can also be seen in KPConv [6]. To alleviate this



issue, we use the fitting loss (Lfit) to enforce kernel points
to fit the local region:

Lfit = α× 1

N

∑
p∈P

∑
pk∈Pk

min
pr∈Pr

(∥pk − (pr − p)∥
σ

)2

.

(9)
Additionally, we use repulsive loss (Lrep) to avoid kernel
points’ receptive areas overlapping:

Lrep=
β

N×Nk×(Nk−1)

∑
p∈P

∑
pi
k
∈Pk

∑
i̸=j max

(
0,1− ∥pi

k−p
j
k
∥

σ

)2

.

(10)
Lrep and Lfit facilitate model optimization, but they also
harm the flexibility of RepKPoints. To strike a balance, we
set coefficients α and β to 0.1.

D. Robusteness Test
We report detailed quantitative results of the robustness test
in Table 1, which corresponds to Table 3 in the main paper.
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Figure 2. Impacts of the kernel point number in terms of Chamfer
Distance (×103) on PU1K dataset.

E. Supplemental Ablation study
We show the impacts of kernel point number in RepKPoints
(i.e., Nk) in Figure 2. According to the results, we set Nk

to 15 to achieve the best performance.

F. Parameters and Latency
We report the numbers of parameters, training-time mem-
ory usage, and inference speeds (in terms of latency) in Ta-
ble 2. It is well known that latency and training-time mem-
ory are not proportionate to the number of parameters. All
models in this table was trained on a single Nvidia 1080Ti
with a batch size of 32, our model takes significantly less
memory. The inference speed was evaluated on a single
Nvidia 1080Ti with a batch size of 1.

G. More Visual Results
As discussed in the experimental section of the main pa-
per, visual results have the same importance as quantitative

results. Therefore, we provide more visual results in the
supplementary material. Figure 3 shows the upsampling re-
sults at three different input resolutions and patterns on the
robustness test dataset. Figure 4 shows the visual results
of arbitrary-scale upsampling compared with Grad-PU. We
also select several shapes of PU1K dataset and show them
in Figure 5.

References
[1] Yun He, Danhang Tang, Yinda Zhang, Xiangyang Xue, and

Yanwei Fu. Grad-pu: Arbitrary-scale point cloud upsam-
pling via gradient descent with learned distance functions.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5354–5363, 2023. 3

[2] Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Pu-gan: a point cloud upsampling ad-
versarial network. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 7203–7212,
2019. 3

[3] Ruihui Li, Xianzhi Li, Pheng-Ann Heng, and Chi-Wing Fu.
Point cloud upsampling via disentangled refinement. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 344–353, 2021. 3

[4] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017. 1

[5] Guocheng Qian, Abdulellah Abualshour, Guohao Li, Ali
Thabet, and Bernard Ghanem. Pu-gcn: Point cloud upsam-
pling using graph convolutional networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11683–11692, 2021. 3

[6] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 6411–6420, 2019. 1

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1

[8] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics (tog), 38(5):1–12, 2019. 1

[9] Wang Yifan, Shihao Wu, Hui Huang, Daniel Cohen-Or, and
Olga Sorkine-Hornung. Patch-based progressive 3d point set
upsampling. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5958–
5967, 2019. 3

[10] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Pu-net: Point cloud upsampling network.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2790–2799, 2018. 3

[11] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In Proceedings of



Table 1. Detailed quantitative results of the robustness test. The best and second-best results are highlighted in bold and underline,
respectively.

Uniform inputs Noisy inputs Random inputs Noisy + Random

Input resolution Methods
CD
×103

HD
×103

P2F
×103

CD
×103

HD
×103

P2F
×103

CD
×103

HD
×103

P2F
×103

CD
×103

HD
×103

P2F
×103

2048 points

PU-Net [10] 0.444 3.931 4.578 0.579 5.980 9.769 0.439 4.957 4.117 0.632 7.046 9.636
MPU [9] 0.280 3.910 2.842 0.445 6.750 7.166 0.324 4.993 3.021 0.497 6.725 7.529

PU-GAN [2] 0.260 4.707 1.991 0.514 7.621 9.063 0.256 4.528 2.314 0.541 7.541 9.433
Dis-PU [3] 0.264 4.411 2.020 0.418 6.964 6.729 0.278 3.773 2.172 0.464 5.796 8.081

PU-GCN [5] 0.278 3.579 2.549 0.435 5.121 7.076 0.316 4.201 2.820 0.471 6.000 7.407
Grad-PU [1] 0.264 2.623 1.982 0.440 4.393 6.439 0.480 6.285 2.119 0.601 7.223 6.445

RepKPU 0.248 2.880 1.906 0.404 4.817 6.721 0.268 3.850 2.147 0.449 5.892 7.020

1024 points

PU-Net [10] 0.933 7.648 7.252 1.007 9.042 11.401 0.785 8.572 6.461 1.013 10.807 10.890
MPU [9] 0.597 5.705 4.502 0.742 7.870 7.912 0.666 9.922 4.770 0.900 11.032 8.380

PU-GAN [2] 0.569 6.259 3.448 0.834 8.858 9.778 0.580 8.994 3.973 0.883 11.926 10.480
Dis-PU [3] 0.548 5.642 3.355 0.679 7.508 6.999 0.603 8.778 3.699 0.783 10.237 7.373

PU-GCN [5] 0.595 5.277 4.133 0.731 7.272 7.719 0.680 8.198 4.555 0.885 10.275 8.111
Grad-PU [1] 0.563 4.989 3.349 0.705 6.496 6.887 0.947 11.583 3.597 1.051 12.657 6.887

RepKPU 0.539 5.086 3.178 0.679 7.156 6.857 0.594 7.706 3.520 0.770 9.786 7.095

512 points

PU-Net [10] 1.792 13.327 11.881 1.769 12.904 14.660 1.722 15.610 10.122 1.973 18.786 13.512
MPU [9] 1.221 11.512 7.197 1.295 13.140 9.721 1.475 15.278 7.446 1.622 18.720 10.286

PU-GAN [2] 1.176 10.839 6.114 1.388 13.296 11.405 1.202 14.816 6.708 1.547 18.487 12.318
Dis-PU [3] 1.073 10.671 5.707 1.190 12.627 8.464 1.223 13.272 6.056 1.419 17.017 8.963

PU-GCN [5] 1.197 9.179 6.703 1.297 11.142 9.450 1.416 13.566 7.179 1.620 16.774 10.032
Grad-PU [1] 1.094 8.707 5.464 1.256 9.945 8.117 1.946 19.889 5.889 2.048 20.559 8.310

RepKPU 1.080 10.022 5.476 1.189 11.312 8.207 1.215 13.224 5.966 1.345 16.720 8.585

Average

PU-Net [10] 1.056 8.302 7.904 1.118 9.309 11.943 0.982 9.713 6.900 1.206 12.213 11.346
MPU [9] 0.699 7.042 4.847 0.827 9.253 8.266 0.822 10.064 5.079 1.006 12.159 8.732

PU-GAN [2] 0.668 7.268 3.851 0.912 9.925 10.082 0.679 9.446 4.332 0.990 12.651 10.744
Dis-PU [3] 0.628 6.908 3.694 0.762 9.033 7.397 0.701 8.608 3.976 0.889 11.017 8.139

PU-GCN [5] 0.690 6.012 4.462 0.821 7.845 8.082 0.804 8.655 4.851 0.992 11.016 8.517
Grad-PU [1] 0.640 5.440 3.598 0.800 6.945 7.148 1.124 12.586 3.868 1.233 13.480 7.214

RepKPU 0.622 5.996 3.520 0.757 7.762 7.262 0.692 8.260 3.878 0.855 10.799 7.567

Table 2. The number of parameters, training memory usage, and
latency.

Methods
Params
kb

Training Memory
G

Latency
s

PU-Net [10] 814.3 7.596 0.314
MPU [9] 76.2 7.050 0.303

PU-GAN [2] 684.2 7.058 0.403
Dis-PU [3] 1047.0 7.060 0.579

PU-GCN [5] 76.0 7.562 0.317
Grad-PU [1] 67.1 7.144 0.306

RepKPU 1458.6 5.860 0.215

the IEEE/CVF international conference on computer vision,
pages 16259–16268, 2021. 1
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Figure 3. Visual results of robustness test. We show upsampling results at three different input resolutions (i.e., 512, 1,024, 2,048). For
three different resolutions, we select noisy, random, and noisy + random patterns, respectively.
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Figure 4. Visual results of arbitrary-scale upsampling compared with Grad-PU. The upsampling rates are 5, 6, 7, 11, 15, and 19, respec-
tively.
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Figure 5. Visual results of RepKPU on PU1K dataset.
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