Supplementary material for ‘RepKPU: Point Cloud Upsampling with Kernel
Point Representation and Deformation’

(a) Dense Block
F 3C, — C,
i—1
l VA £ F

p VA VA E
(b) Encoder
32 C ‘r\ 4C, - C.

Figure 1. (a) Details of dense block (DB), where VA indicates
vector attention mechanism [11]. (b) Details of our encoder.

A. Encoder

We show the complete details of our encoder in Figure 1.
There are no downsampling operations in the encoder. The
process of vector attention mechanisms [11] is as follows:
Given coordinates P € RY*3 and current features F, €
RN*C e first adopt three linear layers to project F, to
Q € RVXCe | € RN*Ce and ¥V € RNV*C respectively.
Then we conduct feature aggregation like:

= MLP; (q; — k;) + MLP2(p; — p;),j € knn(p;),
C.—C. 3—Ce
(D
f, = Conv (exp(ai;) O v;) + 1,
Ce—C. jeknn(ps) Zjeknn(pi) exp(aij)
(2

where, q; € O, k; € K, v; € V,p; € P,and f; € F,.
Conv indicates a linear projection. F;, = {f; } is the output
of VA operation. All the addition, division, and multiplica-
tion operations are element-wise.

We replace vector attention mechanisms with graph con-
volutions [8] to build another encoder. Instead of using k-
nn searching in the feature space, we use it in the geometric
space:

= Conv (MaxPooling MLP (cat(f;, f;

—fi))) + fi.
C.—C, j€knn(p;) 2C.—C,

3)

We also construct a variant of the encoder based on Set

Abstraction [4]:

= oy (M]ag{f;gglilg MLP (cat(f), p; —pi))) +i.
4)

B. Cross-attention Transformer

Before feeding F,; and F}, into transformer, we first project
them to F,; € RNe*Ca and Fy, € RN+XC4 with two linear
layers. We define the input query vectors of the ¢-th cross-
attention layer as . Note that F) = F,/. Following [7],
we then obtain Q;, KC;, and V; via linear projection layers.

Qla’C’an - ConV (I) COnd(]:kl) COHV (fk’) (5)
Cd%Cd Cq—Cyq Cd—>Cd

Next, features are aggregated in a multi-head manner:
A' = cat(AL, AL, ..., 2_1),A§ = Attention(Q;;, Kij, Vij),

(6)
here, h indicates the number of head, and we set h = 4.
Finally, with residual connections and FFN (i.e., MLP), the
i-th cross-attention layer outputs F.!:

=A'+ F,, Fit' = FFN (B') + B (7)
Ca—Cq
After passing through transformer, KP-Queries are con-
verted into displacement features F,, where F3 = .7-'5’.

C. Loss Function

Given ground-truth point cloud P,; € Rs¢*3 and upsam-
pled point cloud P, € RM=*3 the CD loss (L.q) is formu-
lated as:

1 , 1 .
Lo =3 ; i fla—bfl+ 57— > min b—a].

9t pep,, “ST
®)

gt
For each center point p € P, we will search for its local
positions P,. and subsequently get the positions of RepK-
Points Py,. If unrestricted, the positions of RepKPoints will
be pulled away from the input points, and the model sub-
sequently cannot perceive any geometry. The same phe-
nomenon can also be seen in KPConv [6]. To alleviate this

issue, we use the fitting loss (L ;;) to enforce kernel points
to fit the local region:

1 . (I — =PI\
Cramax g3 X iy (P00 -

PEP PrEPK
9

Additionally, we use repulsive loss (L) to avoid kernel
points’ receptive areas overlapping:

i j 2

Crer=mxTeltT=Dy Trer Tt ery i max(o,l_w> .

(10)

Lyep and Ly facilitate model optimization, but they also

harm the flexibility of RepKPoints. To strike a balance, we
set coefficients a and S to 0.1.

D. Robusteness Test

We report detailed quantitative results of the robustness test
in Table 1, which corresponds to Table 3 in the main paper.

Chamfer Distance

0.345 0345
0.34
0.34

0333 0334——0:334
0332

033 0:334 0:331

D33— 0220

0327

0.325

0.315
6 7 8 9 10 11 12 13 14 15

Figure 2. Impacts of the kernel point number in terms of Chamfer
Distance (x10%) on PUIK dataset.

E. Supplemental Ablation study

We show the impacts of kernel point number in RepKPoints
(i.e., Ni) in Figure 2. According to the results, we set Ny
to 15 to achieve the best performance.

F. Parameters and Latency

We report the numbers of parameters, training-time mem-
ory usage, and inference speeds (in terms of latency) in Ta-
ble 2. It is well known that latency and training-time mem-
ory are not proportionate to the number of parameters. All
models in this table was trained on a single Nvidia 1080Ti
with a batch size of 32, our model takes significantly less
memory. The inference speed was evaluated on a single
Nvidia 1080Ti with a batch size of 1.

G. More Visual Results

As discussed in the experimental section of the main pa-
per, visual results have the same importance as quantitative

results. Therefore, we provide more visual results in the
supplementary material. Figure 3 shows the upsampling re-
sults at three different input resolutions and patterns on the
robustness test dataset. Figure 4 shows the visual results
of arbitrary-scale upsampling compared with Grad-PU. We
also select several shapes of PU1K dataset and show them
in Figure 5.

References

[1] Yun He, Danhang Tang, Yinda Zhang, Xiangyang Xue, and
Yanwei Fu. Grad-pu: Arbitrary-scale point cloud upsam-
pling via gradient descent with learned distance functions.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5354-5363, 2023. 3

[2] Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Pu-gan: a point cloud upsampling ad-
versarial network. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 7203-7212,
2019. 3

[3] Ruihui Li, Xianzhi Li, Pheng-Ann Heng, and Chi-Wing Fu.
Point cloud upsampling via disentangled refinement. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 344-353,2021. 3

[4] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017. 1

[5] Guocheng Qian, Abdulellah Abualshour, Guohao Li, Ali
Thabet, and Bernard Ghanem. Pu-gen: Point cloud upsam-
pling using graph convolutional networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11683—-11692, 2021. 3

[6] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, Francois Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 6411-6420, 2019. 1

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1

[8] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics (tog), 38(5):1-12, 2019. 1

[9] Wang Yifan, Shihao Wu, Hui Huang, Daniel Cohen-Or, and
Olga Sorkine-Hornung. Patch-based progressive 3d point set
upsampling. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5958—
5967, 2019. 3

[10] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Pu-net: Point cloud upsampling network.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2790-2799, 2018. 3

[11] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In Proceedings of

Table 1. Detailed quantitative results of the robustness test. The best and second-best results are highlighted in bold and underline,

respectively.

Uniform inputs

Noisy inputs

Random inputs

Noisy + Random

Input resolution Methods CD HD P2F CD HD P2F CD HD P2F CD HD P2F
x10% x10% x10% x10% x10® x10® x10® x10°% x10® x10% x10® x10°
PU-Net[10] 0444 3931 4578 0579 5980 9.769 0439 4957 4117 0.632 7.046 9.636
MPU [9] 0.280 3.910 2.842 0445 6.750 7.166 0324 4993 3.021 0497 6.725 71.529
PU-GAN [2] 0.260 4.707 1991 0514 7.621 9.063 0256 4.528 2314 0541 7.541 9433
2048 points Dis-PU [3] 0264 4411 2.020 0418 6964 6.729 0278 3.773 2.172 0464 5.796 8.081
PU-GCN [5] 0.278 3.579 2549 0435 5.121 7.076 0316 4201 2820 0471 6.000 7.407
Grad-PU[1] 0.264 2.623 1.982 0440 4393 6.439 0480 6.285 2119 0.601 7223 6.445
RepKPU 0248 2.880 1.906 0.404 4817 6721 0268 3.850 2.147 0449 5.892 7.020
PU-Net[10] 0933 7.648 7.252 1.007 9.042 11.401 0.785 8572 6.461 1.013 10.807 10.890
MPU [9] 0.597 5705 4502 0742 7.870 7912 0.666 9.922 4770 0.900 11.032 8.380
PU-GAN[2] 0.569 6.259 3448 0834 8858 9.778 0.580 8994 3973 0.883 11.926 10.480
1024 points Dis-PU [3] 0.548 5642 3.355 0.679 7508 6999 0.603 8.778 3.699 0.783 10237 17.373
PU-GCN [5] 0.595 5277 4.133 0731 7272 7719 0.680 8.198 4555 0885 10275 8.111
Grad-PU[1] 0563 4989 3349 0.705 6.496 6.887 0947 11583 3.597 1.051 12.657 6.887
RepKPU 0.539 5086 3178 0.679 7.156 6.857 0.594 7.706 3.520 0.770 9.786 7.095
PU-Net [10] 1.792 13.327 11.881 1.769 12904 14.660 1.722 15.610 10.122 1973 18.786 13.512
MPU [9] 1.221 11.512 7.197 1.295 13.140 9.721 1475 15278 7.446 1.622 18.720 10.286
PU-GAN[2] 1.176 10.839 6.114 1.388 13296 11405 1202 14.816 6.708 1.547 18.487 12.318
512 points Dis-PU [3] 1.073 10.671 5.707 1.190 12.627 8.464 1223 13272 6.056 1419 17.017 8.963
PU-GCN[5] 1.197 9.179 6.703 1.297 11.142 9450 1.416 13566 7.179 1.620 16.774 10.032
Grad-PU[1] 1.094 8707 5464 1256 9945 8.117 1946 19.889 5.889 2048 20559 8.310
RepKPU 1.080 10.022 5476 1.189 11.312 8207 1215 13.224 5.966 1.345 16.720 8.585
PU-Net[10] 1.056 8302 7.904 1.118 9309 11.943 0982 9713 6900 1206 12213 11.346
MPU [9] 0.699 7.042 4847 0.827 9.253 8266 0.822 10.064 5079 1.006 12.159 8.732
PU-GAN[2] 0.668 7.268 3.851 0912 9925 10.082 0.679 9.446 4.332 0990 12.651 10.744
Average Dis-PU[3] 0.628 6908 3.694 0.762 9.033 7397 0.701 8.608 3976 0.889 11.017 8.139
PU-GCN[5] 0.690 6.012 4462 0.821 7.845 8082 0804 8655 4851 0992 11.016 8517
Grad-PU[1] 0.640 5440 3.598 0.800 6.945 7.148 1.124 12586 3.868 1.233 13480 7.214
RepKPU 0.622 5996 3.520 0.757 7.762 7.262 0.692 8260 3.878 0.855 10.799 7.567

Table 2. The number of parameters, training memory usage, and

latency.
. Params Training Memory Latency
Methods kb fe s
PU-Net [10] 814.3 7.596 0.314
MPU [9] 76.2 7.050 0.303
PU-GAN [2] 684.2 7.058 0.403
Dis-PU [3] 1047.0 7.060 0.579
PU-GCN [5] 76.0 7.562 0.317
Grad-PU [1] 67.1 7.144 0.306
RepKPU 1458.6 5.860 0.215

the IEEE/CVF international conference on computer vision,
pages 16259-16268, 2021. 1

512 4x Noisy 1024 4x Random 2048 4x Noisy + Random

MPU PU-Net Input

PU-GAN

RepKPU Grad-PU PU-GCN Dis-PU

GT

Figure 3. Visual results of robustness test. We show upsampling results at three different input resolutions (i.e., 512, 1,024, 2,048). For
three different resolutions, we select noisy, random, and noisy + random patterns, respectively.

11x

15x%

19%

Figure 4. Visual results of arbitrary-scale upsampling compared with Grad-PU. The upsampling rates are 5, 6, 7, 11, 15, and 19, respec-
tively.

Figure 5. Visual results of RepKPU on PUIK dataset.

	. Encoder
	. Cross-attention Transformer
	. Loss Function
	. Robusteness Test
	. Supplemental Ablation study
	. Parameters and Latency
	. More Visual Results

