
Appendix
This section includes more results and details that did not fit into the main paper due to space limitation. Particularly, we offer
expanded theoretical analysis in §A and implementation details in §B, along with other supportive analysis. These sections
provide a deeper understanding and comprehensive context to the research presented in the main body of the paper.

A. Theoretical Analysis
A.1. Posterior mean and covariance using Tweedie’s formula
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This completes the proof of the statement.

A.2. First-order Tweedie sampler
Theorem A.2. (First-order Tweedie Estimator [8]). Given measurements y = A(zT ) + n, n ⇠ N
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where krzA(z)k := maxz kA(z)k and m1 :=
R
kZT � Z̄T k pT�t(ZT |Zt)dZT .

Since krzA(z)k and m1 are finite for most inverse problems, the Jensen’s gap goes to zero as �y ! 1, leading to less
approximation error in (2). This setting is of less practical significance because as �y !1, the measurements y = A(zT )+
�y✏, ✏ ⇠ N (0, I) provide no meaningful information about zT . Thus, sampling from the posterior p0(ZT |y) = p0(X0|y) is
as good as sampling from the prior p0(X0). On the other hand, when �y ! 0, the problem is reduced to a noiseless setting
which is relatively easier to deal with. In practically relevant settings where �y is non-zero and finite, the Jensen’s gap could
be arbitrarily large. This leads to a bias in reconstruction and sub-optimal performance in various tasks as we show in §5.



A.3. Second-order Tweedie sampler from surrogate loss

Theorem A.3 (Tweedie Sampler from Surrogate Loss). Suppose Assumption 4.2 and Assumption 4.3 hold. Let L̂(y, Zt)
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Proof. We want to compute the following:
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where the last step follows from linearity of expectation and the fact that hrpT�t(y|Zt) |Z̄T
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This completes the proof of the first part, L̂(y, Zt)  log pT�t (y|Zt).



Next, the gradient of the lower bound with respect to Zt becomes:
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Connection with the surrogate loss: The gradient of the lower bound L̂(y, Zt) is equal to the negative gradient of the
surrogate loss function L(y, Zt) introduced in §3.2 and §4, i.e., rL̂(y, Zt) ' �rL(y, Zt), when the constants � and �
are chosen appropriately. More precisely, as given in the statement of the Theorem A.3, these gradients are equal when
� = �1

2�2
y

and � = �(1�↵̄T�t)m⇣
1� 1�↵̄T�t

↵̄T�t
md�(1�↵̄T�t)m Trace(r2 log pT�t(Zt))

⌘ . In our implementation, we use rL(y, Zt) that results

in proximal gradient descent in Algorithm 1.

Remark A.4 (Second-order Tweedie for Gaussian Prior). Recall from Appendix A.3 that we want to compute

log pT�t(y|Zt) = logEZT⇠pT�t(ZT |Zt) [pT�t(y|ZT )] .

Let us suppose that the prior is Gaussian, i.e., pT (ZT ) = N (ZT ;µ, I). Then, the forward and reverse process become
Gaussian processes. Therefore, we can compute the posterior mean and covariance analytically using Proposition A.1 as:
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Thus, we obtain pT�t (ZT |Zt = zt) = N (ZT ;
p
↵̄T�tzt + (1� ↵̄T�t)µ, (1� ↵̄T�t) I) 4. Following similar arguments

from the proof in Appendix A.3, if we truncate pT�t (y|ZT ) up to second-order terms in Taylor’s expansion, then the lower
bound only has an additive error by appropriately chosen stepsize. Hence, the gradients match up to some scaling factor.

Note that our theoretical analysis is provided for pixel-space diffusion models. However, it easily extends to latent diffusion
models using proof techniques from PSLD [43]. Importantly, the latent space of latent diffusion models, such as Stable
Diffusion [41] is usually Gaussian, which makes STSL a reasonable algorithm in practice.

4Instead of expanding the term inside expectation as in Appendix A.3, we can exactly compute pT�t (y|Zt = zt) by its second-order Taylor’s expansion
around the posterior mean. Therefore, for a Gaussian prior, this second-order approximation is exact. However, a similar treatment requires Hessian for
non-Gaussian prior, which is computationally expensive in practice.



A.4. Computation using Hutchinson’s Trace Estimator
Given ✏ ⇠ N (0, I), the trace of the Hessian can be efficiently computed as:

E
⇥
✏T (r log pT�t (Zt + ✏)�r log pT�t (Zt))

⇤
�O(k✏k3) ' Trace

�
r

2 log pT�t(Zt)
�
.

To see this, for ✏ ⇠ N (0, I), using Taylor series expansion of the score, we get

r log pT�t (Zt + ✏) ' r log pT�t (Zt) +r
2 log pT�t(Zt)✏+O

�
k✏k2

�
.

Subtracting r log pT�t (Zt) from both sides, and taking projection onto ✏, we have

✏T (r log pT�t (Zt + ✏)�r log pT�t (Zt)) ' ✏Tr2 log pT�t(Zt)✏+O(k✏k3).

The claim follows by taking the expectation of both sides and applying Hutchinson’s trace estimator [20] as given below:
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The last step above involves an approximation of a higher derivative through an expectation of random projections of
perturbed function evaluations. This approach has been well studied in online learning settings and with formal guarantees
(e.g., Lemma 2.1 in [15]). In our case, the approximation additionally involves a “centering” with ✏Tr log pT�t (Zt). While
this terms is zero in expectation, it is useful to keep because as we discuss in Section 3.2, we are evaluating the expectation
through stochastic averaging with finitely many steps. This centering decreases the magnitude of each step, thus resulting in
variance improvement (and thus a less noisy approximation with a fewer number of steps).

B. Additional Experimental Evaluation
B.1. Implementation Details
Image Inversion: We follow the same experimental setup as prior works [8, 43], and use the measurement operators provided
in their original source code: DPS5 and PSLD6. We employ a Gaussian blur kernel (size 61 ⇥ 61, � = 3.0) for Gaussian
deblurring and a motion blur kernel (size 61 ⇥ 61, intensity 0.5) for motion deblurring tasks. For super-resolution, we use
4⇥ and 8⇥ downsampling as measurement operator. Additionally, we introduce 2% salt and pepper noise for denoising and
40% drop rate for random inpainting tasks. For free-form inpainting, we adopt the 10%-20% damage range as utilized in
prior works [10, 45].

Our refinement module in Algorithm 1 uses the Adam optimizer, with an initial learning rate of 1e� 2 and decrementing
by a factor of 0.998 per diffusion time step. This process optimizes the latents with stochastic averaging. Notably, STSL
exhibits robustness across various tasks, showing minimal sensitivity to hyper-parameter changes. Therefore, we maintain
consistent configurations for all tasks, where N = 2, ⌘ = 0.02, ⌫ = 2 and � = 1. We use K = 5 and T = 50 as defualt
and conduct extensive ablation studies for free-form image inpainting task in §B.4. Following the experimental setting of
P2L[10], we add independent and identically distributed Gaussian noise N

�
0, 0.012

�
to each pixel.

Image Editing: In image editing, we use a single stochastic averaging step K = 1 since the latents have been refined during
proximal gradient updates. We use ⌫ = 0.02 for the contrastive loss without normalization by the data dimension d, � = 1
for the measurement loss and the same coefficient for Hutchinson’s trace estimator ⌘ = 0.02 as in inversion. More details
are elaborated in Algorithm 2. For the qualitative demonstration, we compare with NTI7 and a commercial platform that is
publicly available. We conduct the experiments using the latest version of the commercial software by November 2023.
Reproducibility: The pseudo-code of STSL for inverse is given in Algorithm 1 and editing in Algorithm 2. All the hyper-
parameter details are provided in §5 and §B.1.

B.2. Computational Complexity
Table 2 provides a comparative analysis of the runtime performance across various state-of-the-art methods. NFEs are com-
puted based on the required reverse and optimization steps. For instance, P2L [10] demands 1000 reverse steps, accompanied

5https://github.com/DPS2022/diffusion-posterior-sampling
6https://github.com/LituRout/PSLD
7https://github.com/google/prompt-to-prompt/

https://github.com/DPS2022/diffusion-posterior-sampling
https://github.com/LituRout/PSLD
https://github.com/google/prompt-to-prompt/


Algorithm 2: Second-order Tweedie sampler from Surrogate Loss (STSL) for image inversion and editing task
Input: Diffusion time steps T , observed y, measurement operator A, encoder E , decoder D, learned score s✓,

target text “prompt”, text encoder �
Tunable Parameters: likelihood strength �, stochastic averaging steps K, second-order correction stepsize ⌘,
Output: Edited Image D(ZT )

1 Initialization:
�!
Z 0 = E(ATy) . DDIM forward process [35, 48]

2 for t = 0 to T � 1 do
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4 end
5 Initialization: Z0 =
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Z T . proposed reverse process for image inversion

6 for t = 0 to T � 1 do
7 for k = 0 to K do
8 ✏ ⇠ N (0, I) . stochastic averaging
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14 end
15 Initialization: Z0 =
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16 for t = 0 to T � 1 do
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19 '̂t = argmin'tkZt+1 � f (Zt, T � t,'t)k22 . Null-optimization
20 Ẑt+1  CAC(Zt, T � t, '̂t,�{“prompt”}) . Cross-Attention-Control (CAC) [17]
21 ✏ ⇠ N (0, I)
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24 end
25 return D(ZT )

by at least one prompt tuning step per iteration, accumulating in a total of 2000 NFEs. The best results of P2L [10] are
obtained with around 5000 NFEs, which amounts to 30 mins of runtime per image. Other baseline methods require 1000
reverse steps. The best results of PSLD/GML-DPS [43] are obtained with 1000 NFEs, which amounts to 12 mins of run-
time per image. Our STSL framework demonstrates efficiency by employing only 50 DDIM steps coupled with 5 stochastic
averaging steps, resulting in a considerably lower count of 250 NFEs. This translates into significantly lower runtime of
under 3 min with a considerable gain in performance. Note that the runtime of PDM-solvers is lower because the underlying
generative model is smaller compared to large-scale foundation models, such as Stable Diffusion. Despite smaller runtime,
PDM-solvers are subpar SoTA solvers [10, 43] leveraging these foundation models.

B.3. More Qualitative Results
We present extended results of the proposed method and compare with SoTA solvers in motion deblurring (Figure 4), SRx8
(Figure 5), and Gaussian deblurring (Figure 6). Notably, STSL demonstrates superior capability in preserving intricate image
details and reducing artifact generation, particularly in text-rich images. This is exemplified in the last images of Figures 4 and
5, where text clarity and legibility are visibly enhanced. Furthermore, unlike other methods that tend to introduce spurious
textures, our approach consistently maintains high image fidelity, reinforcing the effectiveness of STSL in complex scenarios.

Our results also showcase the adaptability of STSL in image editing tasks. In Figures 9 and 10, we illustrate that conven-
tional editing methods struggle with corrupted input images, whereas STSL-CAT achieves high-fidelity editing under these
conditions. Furthermore, STSL-CAT excels in maintaining the integrity of the image even when the input is not corrupted,



GT Input (corrupted) LDIR LDPS PSLD P2L STSL (ours)

Figure 4. Qualitative results on motion deblurring: Odd rows represent the full image, while even rows show a zoomed-in view of the
green box. The red boxes indicate artifacts from various methods. STSL demonstrates superior performance in preserving image details
while simultaneously minimizing artifacts and fake textures. The competitive baselines: PSLD [43] and P2L[10] introduce artifacts and
fake texture that might be mistaken as sharpness of the reconstructed image. Observe the high fidelity text restoration by the proposed
approach STSL in the last row.



Method LPIPS# PSNR" SSIM" K T NFEs Initialization

STSL-I (Ours) 0.279 30.61 81.53 5 50 250 Alg. 1 Line 5
STSL-III (Ours) 0.282 30.79 82.55 5 200 1000 Alg. 1 Line 5

STSL-II (Ours) 0.386 29.65 77.16 5 50 250 Gaussian
STSL-IV (Ours) 0.311 30.29 81.74 5 200 1000 Gaussian
STSL-V (Ours) 0.291 30.65 82.48 2 1000 2000 Gaussian

P2L [10] 0.321 31.29 85.16 2 1000 2000 Gaussian
PSLD [43] 0.344 31.54 84.20 1 1000 1000 Gaussian
GML-DPS [43] 0.364 31.49 84.00 1 1000 1000 Gaussian
LDPS [43] 0.379 31.34 84.45 1 1000 1000 Gaussian
LDIR [16] 0.386 31.24 84.87 1 1000 1000 Gaussian

DPS [8] 0.368 28.96 69.89 1 1000 1000 Gaussian

Table 5. Quantitative results of the free-form inpainting task on ImageNet-1K. STSL-I/III are initialized from the forward latent
Z0 ⇠ pT (Z0|E(ATy)) while all the other methods are initialized with Gaussian noise Z0 ⇠ ⇡d. As discussed in §B.4, STSL-I/III
sometimes leaves small missing areas as shown in Figure 8 even though it better reconstructs unmasked regions of the image. To make
a fair comparison, we only consider the methods using the same initialization from the Gaussian noise that successfully inpaint all the
missing regions. In this setting, STSL-IV and STSL-V still outperform SoTA solver PSLD [43] and P2L [10] using the same number of
NFEs: 1000 and 2000, respectively.

as demonstrated in Figure 11. These qualitative results, supporting the quantitative data presented in Table 4(f), reveal that
the integration of CAT with NTI preserve image content, such as in areas of the nose and eyes while changing the style. The
refinement of forward latents (§3.2) further contributes to this improvement in rendering details from the corrupt images.

B.4. Free-form Inpainting
The main body of the paper contains quantitative results on standard datasets. In this section, we provide additional quanti-
tative results on free-form inpainting [10], which targets to generate missing pixels in the blank areas as opposed to restore
corrupted pixels. Following prior works [10, 43], we initialize the reverse process at Z0 ⇠ ⇡d in STSL-II/IV/V. STSL-I/III
are initialized at the forward latent Z0 ⇠ pT (Z0|E(ATy)). Table 6 and Table 5 show the quantitative evaluation on FFHQ
(512⇥ 512) and ImageNet (512⇥ 512), respectively.

We conduct ablation studies to analyze the latency-optimization trade-offs. As shown in Table 5, STSL uses different
combinations of stochastic averaging steps K and DDIM steps T . When compared with methods with the same number of
NFEs, STSL outperforms the SoTA solvers PSLD [43] and P2L [10] in terms of LPIPS and achieves comparable results in
terms of PSNR/SSIM. Figure 7 illustrates the qualitative results on ImageNet.

Method LPIPS PSNR SSIM

STSL (ours) 0.260 31.30 87.56
P2L [10] 0.273 32.44 91.00
PSLD [43] 0.312 32.42 88.58
GML-DPS [43] 0.335 32.45 88.66
LDPS [43] 0.372 32.12 88.15
LDIR [16] 0.338 32.25 90.28

Table 6. Additional quantitative results on FFHQ-1K.

Limitation: Figure 8 shows the failure cases of our proposed inverse problem solver STSL in free-form inpainting. We
observe that the large blocks of missing pixels are embedded into the forward latents in STSL-I/III , which is hard to refine
using proximal gradient updates. Therefore, the masked regions of the final reconstruction sometimes contain incomplete
pixels. This issue arises due to imperfect encoder-decoder of the Stable Diffusion foundation model [43], and could be partly
circumvented by slowing down the diffusion process to T = 1000 steps and initializing the reverse process at Z0 ⇠ ⇡d as in
PSLD [43] and P2L [10]. We recommend following this recipe for free-form inpainting.

The proposed inverse problem solver uses AT from DPS [8], which is set to identity for some tasks. It might be better to



use Jax implementation of AT for improved performance as in P2L [10].
Future work: Our approach does not tune the prompt used in the generative foundation model. Integrating prompt-
tuning [10] into our pipeline might prove beneficial.



GT Input (corrupted) LDIR LDPS PSLD P2L STSL (ours)

Figure 5. Qualitative results on SRx8: Odd rows represent the full image, while even rows show a zoomed-in view of the green box.
The red boxes indicate artifacts from various methods. STSL restores image details without introducing artifacts (row 1) and shows its
potentiality in restoring images with complicated patterns (row 2 and row 6). The competitive baselines: PSLD [43] and P2L [10] suffer
from artifacts that are clearly visible in the highlighted regions.



GT Input (corrupted) LDIR LDPS PSLD P2L STSL (ours)

Figure 6. Qualitative results on Gaussian deblurring: Odd rows represent the full image, while even rows show a zoomed-in view of
the green box. The red boxes indicate artifacts from various methods. Row 4 and row 8 demonstrate the superior performance of STSL in
restoring text and preserving details.



Figure 7. Qualitative results on free-form inpainting: Odd rows represent the full image, while even rows show a zoomed-in view of
the green box. Note that the model is expected to generate new content that harmonizes with the rest of the pixels, but not necessarily
reproduce the same image. This is because the goal is to sample the posterior p (X|y). The outputs from STSL contain more detailed
patterns (row 6) and clear edges (row 2&4).
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Figure 8. Failure cases of free-form inpainting: The restored images appear sharp when initialized with the forward latents Z0 ⇠
pT (Z0|E(ATy)) in STSL-I/III, while the images with the reverse process initialized at Z0 ⇠ ⇡d yield more complete inpainting results
(STSL-II/IV/V). One may choose the initialization and the corresponding hyper-parameters as per the requirement in practice.
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Figure 9. Qualitative results on image editing on the corrupted images “tiger” to “leopard”. While NTI[35] fails to conduct high-
fidelity image editing when various corruptions are presented, the commercial software synthesizes artistic visual objects without preserving
the content of the source image. Furthermore, the proposed method STSL-CAT localizes the intended edits without manual intervention,
which is necessary for the commercial software.
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Figure 10. Qualitative results on image editing on the corrupted images “cat” to “fox”. The proposed method STSL preserves the
content of the source image while performing text-guided image editing on corrupt images.
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Figure 11. Qualitative results on Image editing on the clean images. Cross attention tuning (CAT) helps preserve image details with
NTI [35] (NTI-CAT), and STSL-CAT further enhances the quality of the image by refining the forward latents.
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