
Supplementary Material for UnScene3D: Unsupervised 3D Instance
Segmentation for Indoor Scenes

1. Appendix

1.1. UnScene3D as Data Efficient Pretraining

We report additional qualitative details on the data efficient
pretraining performance of UnScene3D in Table 1.

We also note that the 3D contrastive pre-training of CSC,
similar to other 3D pre-training methods developed for non-
transformer backbones [6, 10, 16, 18], was not beneficial for
a transformer-based model. A similar observation was also
reported in a recent pretraining method [7]. We thus also
compare with CSC pretraining on their original 3D back-
bone (which demonstrated improvement over training from
scratch on the same backbone). Our approach can improves
notably over both alternatives.

1.2. The effect of noise robust losses.

We adopt DropLoss [15] for our self-training cycles, which
is robust to sparse data and missing annotations. In partic-
ular, we use a weighted combination of cross-entropy and
Dice [13] losses for bipartite-matching with pseudo anno-
tations. We then drop losses for backpropagation which do
not have at least τdrop overlap with the annotations from
the previous cycle. We evaluate the effect of different noise
robust losses for self-training in Table 2. We compare our
baseline losses with a 3D extension of the projection loss
of [14], and our adaptation of DropLoss from [15]. Our ap-
proach does not penalize for missing pseudo masks, which
enables more effective self-training to discover previously
missed instances.

1.3. Additional Qualitative Results

We show more qualitative results from our method trained
on ARKitScenes [1] in Figure 1 and on ScanNet [4] in Fig-
ure 2.

1.4. Pseudo Mask Generation Ablations

We also ablate the saliency threshold, oversegmentation pa-
rameters, and separation strategy in our pseudo mask gen-
eration. If not explicitly stated otherwise in Table 8, we
use both 2D and 3D modality features for the pseudo mask
generation.

What is the effect of the saliency threshold in pseudo
mask generation? We threshold the saliency matrix A
with τcut = 0.55 for geometric-only features and τcut =
0.65 for combined modalities. Table 3 shows that our ap-
proach maintains robust performance across a large range
of τcut thresholds used to estimate salient areas for pseudo
masks. In this table we report results using features from
combined modalities, but similar behaviour can be observed
for the other scenarios as well.

The effect of iterative mask densification. We designed
a strategy to leverage a sparse set of relatively clean initial
pseudo masks, which are progressively extended with con-
fident self-predictions during later iterations. This leads to
a 3x improvement over state of the art in the Average Preci-
sion Metric. We could also consider different mask refine-
ment strategies using a mixture of segments, initial masks
or self-trained instances. Tab. 4 ablates a mask refinement
strategy of discarding previous masks and retaining current
predictions. We also consider using Felzenswalb segments
directly instead of feature-based pseudo labels. Both these
strategies lead to lower performance due to the increased
presence of noisy labels, which dominate the training sig-
nal.

Robustness to oversegmentation parameters. Table 5
shows that our approach maintains strong robustness to a
wide range of oversegmentation parameters for our geomet-
ric segments (our used parameters denoted in bold).

Additional pseudo mask generation hyperparameters.
Additionally, we also test the effect of other hyperparam-
eters in out NCut-based pseudo mask generation module,
including used distance metrics in the similarity matrix and
different methods to separate unconnected patches in the
predicted foregrounds. During the foreground separation in
the Normalized Cut algorithm, we had an additional condi-
tion for the minimum number of foreground segments for
the bipartitions. This conditions was able effectively filter
out suboptimal partitioning of the full graph leading to sepa-
rated parts from the full instances. Reducing the size of this
parameter can directly lead to a more dense set of initial
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Figure 1. Additional results on the ARKitScenes dataset [1], compared to geometric clustering and oversegmentation-based baselines.



Figure 2. Additional results on the ScanNet dataset [4], compared to geometric clustering and oversegmentation-based baselines.



1% 5% 10% 20% 50%

Model Backbone AP@25 AP@50 AP AP@25 AP@50 AP AP@25 AP@50 AP AP@25 AP@50 AP AP@25 AP@50 AP

Scratch Bottom-up 22.6 14.1 6.8 45.5 33.3 18.1 54.8 39.2 21.9 61.0 43.4 25.5 67.0 51.4 30.3
CSC [6] Bottom-up 35.6 22.1 12.5 52.7 39.9 23.3 59.8 43.8 25.0 63.8 48.9 29.6 70.5 56.0 33.6
Scratch Transformer 24.7 9.3 4.6 48.1 27.6 16.3 59.2 39.1 23.4 66.4 49.6 33.1 78.9 67.5 49.8

CSC Transformer 17.0 6.8 3.8 44.2 22.7 13.1 55.2 32.3 19.1 62.0 41.2 26.0 73.7 58.2 40.0
Ours Transformer 43.5 28.4 15.8 63.2 46.8 28.3 70.3 55.7 36.7 72.4 60.7 41.5 78.9 68.0 48.2

Table 1. Unsupervised class-agnostic pretraining with our method can also act as a powerful pretraining strategy, advancing over state
of the art. We report pretraining with CSC [6] and UnScene3D, and evaluate the downstream weakly-supervised instance segmentation
performance on ScanNet with percentage of limited annoated scenes used denoted in the top row. As we found that CSC degraded
performance when using a transformer-based backbone, we also report the performance of training from scratch and CSC on their originally
proposed backbone of a sparse UNet with bottom-up voting.

AP@25 AP@50 AP AP Final

Initial Pseudo Masks 19.9 10.0 5.9 -
Baseline losses [12] 42.3 16.9 7.2 14.2
Projection loss [14] 35.7 12.1 4.7 7.2
DropLoss [15] 52.9 23.2 10.4 15.9

Table 2. A 3D projection loss struggles with under-determined as-
sociations, while DropLoss helps UnScene3D to discover parts of
the scene that were missed by the source supervision. We report
all metrics after a single iteration and the AP scores after 4 itera-
tions of self-training.

τcut AP@25 AP@50 AP

0.40 16.7 9.0 5.2
0.50 20.8 10.7 5.7
0.55 21.0 10.8 5.7
0.60 21.3 11.3 5.8
0.65 19.9 10.0 5.9
0.70 18.2 9.9 5.6
0.80 11.8 5.0 2.6

Table 3. Our pseudo mask generation quality, as measured by AP
metrics, maintains robustness to a large range of τ thresholds that
extract saliency. Note that this measures the quality of only the
pseudo masks; our full approach with self-training produces sig-
nificantly improved results. In this table we show results and pa-
rameters used by our method in bold and report pseudo mask per-
formance generated from both modalities.

pseudo masks, with the cost of higher false positive rate.
In Table 5 we report a sparser and denser version of the
datasets with a minimum number of foregorund segments
of 8 and 2 accordingly, and show the initial higher scores
of the pseudo annotation doesn’t necessarily propagate to
better downstream self-trained performance.

Finally, we also ablate the effect of our physical
connectivity-based foreground separation introduced in
Section 3.1. In our main method we separate all set of
connected components in the foreground, but only keep the
component with the highest eigenvector activation (Max).

AP@25 AP@50 AP

Felzenswalb Masks 35.5 20.6 10.3
Mask Refinement 43.7 24.4 12.4
Mask Addition (Ours) 58.6 32.0 16.0

Table 4. Instead of using masks from previous iteration directly
it is the best to keep the initial masks fixed, and iteratively sam-
ple plausible predictions to enrich the pseudo dataset during self-
training. This method strikes a balance between relatively clean,
but sparse labels and increasing number of confident samples. Fi-
nally, even though Felzenswalb oversegmentation yields to higher
precision, then our initial mask prediction algorithm, it also in-
cludes more background into the training, and this way plateauing
at a lower self-training performance.

As an alternative we also test a method where we calculate
the highest average activation in the connected component
(Avg.), a method where we keep the component with the
largest surface value (Largest) and finally, to test the effect
of this module, without any kind of connectivity-based sep-
aration (No Sep.).

1.5. Comparison with methods from the 2D domain

To ensure a fair evaluation of methods operating on differ-
ent input domains in Table 1. we followed the established
procedure of well-known baselines [3, 5, 8]. This involves
using depth information to project 2D predictions into 3D
such that all methods are evaluated in the same 3D do-
main and aggregate multiple predictions through consensus
by majority voting or accepting the maximum confidence
scores for every voxel location. We also show results evalu-
ated against 2D ScanNet images by projecting our method’s
predictions into 2D in Tab. 6, and comparing it to the cur-
rent state of the art 2D unsupervised segmentation method
[15] which demonstrates the usefulness of 3D reasoning.s

We also compare to weakly-supervised instance segmen-
tation method SAM3D [17], where powerful class-agnostic
2D masks are extracted by the powerful SAM model [9].
Here the projected 2D masks are merged into 3D masks iter-
atively with a bottom-up bidirectional merging approach to
achieved cleaner and more view-independent 3D instances.



Generation Params. Initial Pseudo Mask 1 Iteration of Self-Training 4 Iterations of Self-Training

Segment Size Metric Separation Min. # of Foreground # of Instances AP@25 AP@50 AP AP@25 AP@50 AP AP@25 AP@50 AP

30 Cos Max 8 2169 21.9 11.5 6.3 53.7 26.2 12.4 55.4 30.3 15.3
50 Cos Max 8 1414 19.9 10.0 5.9 52.9 23.2 10.4 58.5 32.2 15.9

100 Cos Max 8 1090 17.4 8.0 4.2 33.1 10.2 3.9 39.6 13.7 5.3
200 Cos Max 8 584 11.0 3.7 1.8 24.3 8.7 2.1 26.1 9.7 2.4
400 Cos Max 8 319 6.4 2.5 1.1 19.1 3.9 1.2 19.9 3.2 1.0

50 L2 Max 8 1539 20.1 10.6 5.4 49.0 21.7 9.8 55.3 38.4 14.3
100 L2 Max 8 805 13.3 5.3 2.6 30.8 8.3 2.8 39.0 12.7 5.0

50 Cos No Sep. 8 125 4.3 0.3 0.1 4.3 0.5 0.2 4.9 0.6 0.2
50 Cos Largest 8 620 11.5 4.9 2.5 11.5 1.5 0.4 12.9 2.2 12.9
50 Cos Avg. 8 1078 16.8 9.1 5.1 36.4 12.5 4.9 43.8 17.8 7.5

30 Cos Max 2 2909 29.0 15.6 8.7 53.6 28.6 14.2 54.2 29.8 15.4
50 Cos Max 2 2512 24.9 12.4 7.2 56.5 29.8 15.0 51.3 26.2 12.6

100 Cos Max 2 2317 23.1 12.3 6.8 51.8 24.4 11.6 57.1 31.3 15.6
200 Cos Max 2 2181 28.4 15.5 8.9 54.6 28.7 13.7 56.6 31.4 15.6
400 Cos Max 2 1373 20.6 11.1 6.3 51.0 24.8 11.8 55.8 30.3 15.2

50 L2 Max 2 2496 28.6 15.8 9.0 55.8 29.6 14.6 54.8 30.3 15.3
100 L2 Max 2 1668 23.4 12.7 7.3 53.1 25.0 11.3 56.3 27.7 12.9

50 Cos No Sep. 2 159 0.2 0.5 3.6 5.4 0.6 0.3 3.9 0.4 0.2
50 Cos Largest 2 1026 14.1 7.2 3.9 11.5 1.8 0.5 14.5 2.5 0.7
50 Cos Avg. 2 2053 23.3 12.0 6.8 52.5 27.4 12.7 54.9 29.9 14.9

Table 5. We denote the parameters used by our method in bold. We show that our method is robust to a wide range of numbers regarding
segments sizes and different similarity metrics, and only degrades somewhat in performance when segments are constrained to be too
large. We also show that the separation of physically distant foreground patches is important and it is beneficial to use the activation of the
eigenvector for the best results. Finally, we show that denser initial mask predictions lead to quantitatively better initial pseudo annotations,
and even better self-training performance after a single iteration, but underperforming in their final scores. This behaviour can be explained
by the larger false positive ratio in the denser initial predictions, which is propagating through all iterations, but thanks to the noise robust
losses and iterative refinement of predictions the sparse set of labels can be effectively used. In this table we report results using both
modalities for the initial pseudo mask generation, and number predicted pseudo instances in the official validation split of the ScanNet
dataset.

AP@25 (2D) AP@50 (2D) AP (2D)
CutLER (2D) 7.8 2.8 0.7
Ours (projected) 60.0 38.1 21.1

Table 6. 2D evaluation on ScanNet images.

A qualitative comparison on ScanNet can be seen in Table
7, with qualitative comparisons in Figure 3.

AP@25 AP@50 AP

SAM3D 37.2 11.8 3.7
SAM3D with GT Segments 47.6 24.1 10.8
Ours 58.5 32.2 15.9

Table 7. UnScene3D achieves significantly better performance on
ScanNet than SAM3D through our strong multi-modal reasoning.

Figure 3. While SAM has powerful capabilities in crisp 2D
mask generation, when aggregated on 3D, SAM3D tends to over-
segment object instances.

SAM3D must resolve view inconsistencies and SAM’s
tendency to over-segment objects, which results in SAM3D

splitting instances, while UnScene3D is able to achieve
complete masks through multi-modal reasoning. We be-
lieve integrating SAM or other (weakly-) supervised 2D
models into our pipeline to enable multi-modal reasoning
is an interesting avenue for future work.

1.6. Additional Implementation Details

Here, we further explain the implementation details of our
pseudo mask generation.

Pseudo code for masked NCut We show the pseudo
code-style implementation for the masked normalized cut
algorithm generating multiple instances as pseudo masks.
The full algorithm can be seen in 1.

3D Adaptation of FreeMask We also evaluate an al-
ternative pseudo mask segmentation algorithm besides the
masked NCut method. In the 2D domain FreeSOLO
[14] also followed a two stage pipeline first generating
the pseudo annotations, and then refine those predictions
through a series of self-training cycles. We followed their
intuition to take a self-supervised pretrained backbone and
extract it’s deep features at multiple levels of the decoder.



Algorithm 1: Masked NCut on 3D segments

Data: S = {si, . . . , sN}, F ∈ RNxD,
C = {(s1, sk), (s1, sl), . . . }

Result:M = {mj , . . . ,mM}
1 M← {}
2 while j ≤ max inst num do
3 F ′ ← F
4 F ′[M]← 0. // Mask out previous insts.

5 W ← F ×FT // Feature similarity

// Saliency with connected graph

6 Wi,k =

{
1. ifWi,k ≥ τcut
ϵ ifWi,k < τcut

7 Di,i =
∑

k Wi,k

// Get 2nd smallest eigenvector

8 λ,v← eigh(D −W,D,−2)

9 mi =

{
1 if vi ≥ mean(v)
0 if vi < mean(v)

// Invert bipartition if too large

10 if sum(m) > D/2 then
11 m = 1−m
12 v = −1. ∗ v

// Separate unconnected components

13 vmax = max(v)
14 m̃ = sep(v, vmax, C)
15 M ←M ∪ {m̃}

While in standard pretrained UNet-style models early fea-
tures represent global context, final features and local se-
mantic meaning, intermediate features can act as an useful
proxy to extract self-similar regions in the input samples. In
our implementation we used the same backbone features of
[2, 6] for the same 2D-3D setup and extracted the penulti-
mate layer features for the self-similarity calculation. Then
sampled the feature space with the Furthest Point Sampling
[11] strategy to get a more limited set of anchor points, later
used to extract self-similar regions. For every seed point
we took similarity scores with the other features of the full
scene and thresholded it to extract salient regions. Finally,
we used the efficient Non Maximum Suppression imple-
mentation from [14] to sort the predicted salient areas and
filter out overlapping regions. We also used average sim-
ilarity score combined with the salient region area to get
maskness scores for every salient region, directly following
the original implementation. We report comparative results
of the masked NCut algorithm and our FreeMask 3D adap-
tation after self-training in Table 3. of the main paper and
in Table 8 of the initial pseudo mask scores.

We also note here that while there is a difference in the
initial pseudo mask qualities for the different methods, the
downstream performance is way more significant. This can
explained by the nature of the pseudo masks. NCut provides

Modality AP@25 AP@50 AP

FreeMask 3D 13.7 7,2 3.7
Ours 3D 13.8 4.7 2.0

FreeMask 2D 15.3 6.6 2.9
Ours 2D 15.6 7.2 3.6

FreeMask both 17.9 7.5 3.7
Ours both 19.9 10.0 5.9

Table 8. We compare pseudo mask generation from 3D-only fea-
tures (3D), color-only features (2D), and both color and geometry
(both) signal, as well as with pseudo annotation generation algo-
rithm FreeMask. We compare the quality of the initial pseudo
mask dataset using our masked NCut algorithm and the adaptation
of FreeMask [14] to 3D. We see that the normalized cut-based
method is superior for both modalities.

a clean and sparse set of annotation, which is easy to den-
sify for following iterations. On the other hand, the more
dense, but noisy FreeMask predictions remain in the train-
ing for the duration of the whole training, hindering the per-
formance of the self-trained model with noisy supervision.
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