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Overview
In this Supplementary Material, we prove more bounds

related to geometric errors

E2
G(z,θ) = min

ε
∥ε∥2 (1)

s.t. C(z + ε,θ) = 0. (2)

In Appendix A, we generalize Proposition 3.1 to the most
general setting with N constraints of any degree. In Ap-
pendix B, we give a result in the spirit of Proposition 3.2
for N quadric constraints. We restrict to quadric polyno-
mials in the case of multiple constraints (this applies to the
epipolar constraints).

In Appendix C we provide details regarding the opti-
mization of Sampson approximations, and in Appendix D
we show additional results from the experiments in the main
paper.

A. General Case Lower Bound for ∥εG∥
In our pursuit to understand constraints of any degrees,

we make use of d-norms:

∥x∥d := d

√
xd
1 + · · ·+ xd

n. (3)

The 2-norm ∥x∥2 is also simply denoted by ∥x∥. For matri-
ces however, ∥ · ∥ will refer to the operator norm. We apply
the following estimation of polynomials of general degrees.

Lemma A.1. Let q : Rn → R be a homogeneous polyno-
mial in n variables of degree d. Then

|q(x)| ≤ µq∥x∥dd, (4)

where µq is the sum of absolute values of coefficients of q.

This lemma can be extended to non-homogeneous poly-
nomials in a straightforward way, by replacing x by (x; 1)
in (4).

Proof. Our first observation is that

|q(x)| ≤
(

max
∥y∥d=1

|q(y)|
)
∥x∥dd. (5)

For ∥y∥d = 1 we can bound |q(y)| from above by the sum
of the absolute values of the coefficients of q because, for
x with ∥x∥d = 1, each coordinate xi has norm ≤ 1 and
therefore the norms of monomials are bounded by 1.

We extend the notation from the main body of the paper.
A set of polynomial constraints

C(z) = (C1(z), C2(z), . . . , CN (z))
⊺
= 0, (6)

for z ∈ Rn, can be expressed via a Taylor expansion:

Ci(z + ε) = C(z) +

d∑
j=1

1

j!
ε× T (i)

j , (7)

for each i, where T (i)
j is a symmetric n× · · · × n tensor of

order j, and

ε× T (i)
j =

∑
l1,...,lj∈[n]

(T (i)
j )l1,...,ljεl1 · · · εlj . (8)

For example, T (i)
1 is the Jacobian of Ci and T (i)

2 is the Hes-
sian of Ci.

As in (8), each tensor T (i)
j defines a polynomial, and by

Lemma A.1,

|ε× T (i)
j | ≤ µ

(i)
j ∥ε∥jj , (9)

where µ
(i)
j is the sum of absolute values of coefficients of

this polynomial. Let ε × Tj denote the vector of N coor-
dinates (ε × T (i)

j )Ni=1. Write µj for the sum of all µ(i)
j for

i = 1, . . . , N , and note that

∥ε× Tj∥ ≤ µj∥ε∥jj . (10)
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Recall from Section 2.2 that putting Σ = I gives us

εS = −J†C(z). (11)

Proposition A.2. Assume that the optimization problem (1)
has N homogeneous constraints of at most degree d, that
J evaluated at z has linearly independent rows and that
C(z) ∈ Im J . Then

∥εS∥ ≤ ∥εG∥+ ∥J†∥
d∑

j=2

µj

j!
∥εG∥jj . (12)

Recall that ∥J†∥ refers to the operator norm of the
pseudo-inverse of J .

Proof. For εG, we have

0 = C(z) + JεG +
d∑

j=2

1

j!
εG × Tj (13)

= C(z) + J

εG + J†
d∑

j=2

1

j!
εG × Tj

 , (14)

meaning that the norm of εS must be bounded from above
by the norm of

εG + J†
d∑

j=2

1

j!
εG × Tj . (15)

However, by (10) the statement now follows.

B. Multiple Quadric Constraints
In this section we prove an upper bound for the geomet-

ric error in the case of multiple constraints, and take a closer
look at this bound in an example with two quadric con-
straints. Our main tool is the following celebrated result,
as stated in [3, Ch. 2, Cor. 2.15].

Theorem B.1 (Brouwer’s Fixed Point Theorem). Every
continuous function f from a non-empty convex compact
subset K of a Euclidean space to K itself has a fixed point.

Recall that a fixed point of a function is a point x∗ in the
set K such that f(x∗) = x∗. The main theorem of this sec-
tion deals with varieties X that are a complete intersection,
defined by N quadrics C(z) = (C1(z), . . . , CN (z))⊺. By
complete intersection, we mean that the dimension of X is
n−N . We discuss the general case afterwards.

Define

σi := spectral radius of
∥J∥
2

(J†)⊺HiJ
†, (16)

cond(J) := ∥J∥∥J†∥. (17)

Neither σi nor cond(J) are independent of the individual
scalings of Ci for each i = 1, . . . , N . They are however
independent of simultaneous scaling of all constraints.

Since we will deal with multiple constraints of degree
two, we first recall a classical fact about the solutions of
degree 2 equations in one variable. This will be used in the
proof of the main theorem.

Remark B.2. Consider the equation

αx2 + βx+ γ = 0. (18)

As long as α ̸= 0, the solutions to the equation are

x =
−β ±

√
β2 − 4αγ

2α
. (19)

We can consider these solutions as a function of α, β and
γ that outputs a real solution to (18) for inputs in the semi-
algebraic set β2−4αγ ≥ 0, α ̸= 0. Moreover, this function
is continuous because the square root is continuous. The
expression β2 − 4αγ is called the discriminant of (18).

Theorem B.3. Consider a complete intersection defined by
the quadratic equations

C(z) = (C1(z), C2(z), . . . , CN (z))
⊺
= 0. (20)

Assume that J is full-rank at z. If a number κ ≥ 0 satisfies

κ ≥
N∑
j=1

(
|Cj(z)|
∥J∥

+ σjκ

)2

, (21)

then

∥εG∥ ≤ cond(J)κ. (22)

It is easy to check if there is a κ such that the conditions
(21) holds. Indeed, one solves the quadratic equation

κ =

N∑
j=1

(
|Cj(z)|
∥J∥

+ σjκ

)2

. (23)

If there exists real solutions, then they are ≥ 0, because the
right-hand side of the equation is always non-negative. In
this case, the smallest real solution is the smallest κ satisfy-
ing (21).

In order to relate theorem to the Sampson error as de-
scribed in Section 2.1, we note that if the conditions of the
theorem hold for κ = c∥εS∥/cond(J) for some c, then
∥εG∥ ≤ c∥εS∥.

Proof. Define

ε(λ) := ∥J∥J†λ. (24)



Then fi(λ) := Ci(z + ε(λ))/∥J∥ equals

Ci(z)

∥J∥
+ λi +

∥J∥
2

λ⊺(J†)⊺HiJ
†λ. (25)

We estimate fi from above and below using σi:

Ci(z)

∥J∥
+ λi − σi∥λ∥2 ≤ fi(λ) ≤

Ci(z)

∥J∥
+ λi + σi∥λ∥2.

(26)

This estimation can be refined for λ in a specific region.
Indeed, let λ ∈ RN satisfy∣∣∣∣λi +

Ci(z)

∥J∥

∣∣∣∣ ≤ σiκ, (27)

for each i = 1, . . . , N and let κ be as in the statement.
Using the reverse triangle inequality, we have

|λi| ≤
|Ci|
∥J∥

+ σiκ, (28)

and it follows by (21) that
∑N

j=1 λ
2
j ≤ κ.

Then from (26), we get

Ci(z)

∥J∥
+ λi − σiκ ≤ fi(λ) ≤

Ci(z)

∥J∥
+ λi + σiκ, (29)

and this estimation only depends on λi. Fixing each λj , j ̸=
i in (27), the solutions λ±

i to the two linear equations are

λ±
i = −Ci(z)

∥J∥
∓ σiκ, (30)

which satisfy (27). Note that by (29), for λ−
i , fi(λ) ≥ 0

and for λ+
i , fi(λ) ≤ 0. It follows that there must be a real

λ∗
i such that fi(λ) = 0 in the interval∣∣∣∣λ∗

i +
Ci(z)

∥J∥

∣∣∣∣ ≤ σiκ, (31)

because this interval contains both λ±
i .

The existence of a real solution implies that the discrimi-
nant is greater or equal than 0 in (27) and by Remark B.2 we
have that λ∗

i (λ̂i) are continuous functions (here λ̂i denotes
the vector in RN−1 obtained by removing the i-th coordi-
nate from λ ∈ RN ).

Let K be the hypercube defined in (27). In order to apply
Brouwer’s fixed point theorem we consider the continuous
function

F : K → K, (32)

λ → (λ∗
1(λ̂1), . . . , λ

∗
N (λ̂N )). (33)

By the theorem, there is a fixed point λ∗ ∈ K with
the property that F (λ∗) = λ∗. This means exactly that
(λ∗)i = λ∗

i (λ̂i) for each i = 1, . . . , N . By construction,
λ∗
i (λ̂i) solves fi(λ) = 0 for fixed λj , j ̸= i. This means

that fi(λ∗) = 0 for each i = 1, . . . , N .
To summarize, there exists a λ∗ ∈ K such that

Ci(z + ε(λ∗)) = 0 for each i = 1, . . . , N . This means
that ∥εG∥ ≤ ∥ε(λ∗)∥. Further, as we have defined ε,
∥ε(λ∗)∥ ≤ ∥J∥∥J†∥∥λ∗∥2. Finally, ∥λ∗∥2 ≤ κ as noted
above and we are done.

In the general case, where we are given N quadric con-
straints that define a variety X of dimension m that is not
necessarily a complete intersection, we can use the fact that
locally, it is defined by n − m constraints. To be precise,
the Jacobian at a generic point x of X is of rank n − m,
and any choice of n−m constraints with full-rank Jacobian
locally describe X around x. Heuristically, given a data
point z outside the variety, we choose n−m constraints for
which the Jacobian has full-rank and apply Theorem B.3 to
these constraints. We leave it to future work to make this
rigorous.

We illustrate the theorem with an example below.

Example B.4. Consider the two quadratic constraints defin-
ing a variety in R3,

x2 + y2 + z2 − 1 = 0, (34)
z − xy = 0. (35)

This curve is a complete intersection, and the associated Ja-
cobian is

J =

[
2x 2y 2z
−y −x 1

]
. (36)

The bound coming from Theorem B.3 can be used as
long as there exists a k such that

κ ≥
N∑
j=1

(
|Cj(z)|
∥J∥

+ σjκ

)2

. (37)

Note, that this inequality will have a real solution de-
pending on the value of z. To illustrate how often this bound
is satisfied, we conducted the following numerical experi-
ment:

• We sample m data points in the curve,

• introduce an error ϵ in each point and generate a noisy
sample of size m,

• for each noisy point we compute Ci, ∥J∥ and σi and
decide whether the inequality (21) has a solution.

• We count the percentage of points in the sample that
had a positive result in the previous step.

We present our results in Figure 1
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Figure 1. Percentage of data points whose geometric error can be
bounded using Theorem B.3. These percentages were computed
over noisy samples of 200, 500 and 1000 points, and are depicted
respectively in the histograms.

C. Optimization of Sampson Approximations

The constraint C(z, θ) typically depends not only on the
measurements z, but also some model parameters θ which
we are estimating. Fitting the parameters we want to mini-
mize the residuals for each measurement zk, k = 1, . . . ,m.

θ⋆ = argmin
θ

∑
k

∥J†
kC(zk, θ)∥2 (38)

where Jk = ∂C(z,θ)
∂z |z=zk

.
To apply standard non-linear least squares algorithms

(e.g. Levenberg-Marquardt), we need to evaluate the Jaco-
bian of the residuals rk = J†

kC(zk) w.r.t. θ, i.e.

∂rk
∂θ

=
∂

∂θ

(
(
∂C

∂z
)†C(z, θ)

)
(39)

=

(
∂

∂θ
(
∂C

∂z
)†
)
C(z, θ) + (

∂C

∂z
)†
∂C

∂θ
(40)

Denote Jz = ∂C
∂z and Jθ = ∂C

∂θ , then

∂

∂θ
J†

z = −J†
zJθJ

†
z + J†

z(J
†
z)

TJθ(I − JzJ
†
z) (41)

See Golub and Pereyra [2] for more details.

D. Additional Experimental Results

In Table 2 we show the full per-scene results of the co-
variance aware camera pose refinement from Section 4.4 in
the main paper, and Table 1 show the results of refining
the vanishing points using both the mid-point error and the
Sampson error. For this data there was no difference in the
results of the refinement.

YUB+ [1] NYU [5] [4]

Mean AUC Mean AUC

VP from [6] 1.62 0.86 3.24 0.70↰

Mid-point 1.57 0.86 3.24 0.70↰

Sampson. 1.57 0.86 3.24 0.70

Table 1. Refinement of vanishing points.
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[6] Rémi Pautrat, Daniel Barath, Viktor Larsson, Martin R Os-
wald, and Marc Pollefeys. Deeplsd: Line segment detection
and refinement with deep image gradients. In Computer Vi-
sion and Pattern Recognition (CVPR), 2023. 4



τ Chess Fire Heads Office Pumpkin Redkitchen Stairs Average

5p
x

Reproj. 0.86 / 2.47 0.84 / 2.11 0.75 / 1.07 0.89 / 3.05 1.24 / 4.78 1.39 / 4.15 1.22 / 4.44 1.03 / 3.20
Reproj+Cov 0.85 / 2.45 0.82 / 2.04 0.74 / 1.02 0.87 / 2.99 1.22 / 4.75 1.36 / 4.03 1.15 / 4.28 1.01 / 3.10↰

Sampson 0.85 / 2.45 0.82 / 2.04 0.74 / 1.02 0.87 / 2.99 1.22 / 4.74 1.36 / 4.02 1.14 / 4.27 1.01 / 3.10

10
px

Reproj. 0.84 / 2.42 0.90 / 2.25 0.82 / 1.18 0.92 / 3.07 1.25 / 4.79 1.39 / 4.20 1.32 / 4.78 1.06 / 3.24
Reproj+Cov 0.79 / 2.38 0.81 / 2.03 0.73 / 1.03 0.86 / 2.92 1.20 / 4.41 1.32 / 3.83 1.12 / 4.17 0.99 / 2.99↰

Sampson 0.79 / 2.37 0.81 / 2.03 0.73 / 1.03 0.86 / 2.94 1.20 / 4.40 1.32 / 3.85 1.12 / 4.20 0.98 / 2.99

20
px

Reproj. 0.87 / 2.53 1.08 / 2.72 1.04 / 1.45 1.06 / 3.43 1.38 / 5.41 1.49 / 4.50 1.99 / 6.84 1.21 / 3.63
Reproj+Cov 0.75 / 2.30 0.80 / 2.06 0.73 / 1.03 0.88 / 2.91 1.13 / 4.30 1.29 / 3.81 1.36 / 4.89 0.99 / 3.00↰

Sampson 0.75 / 2.31 0.80 / 2.07 0.73 / 1.03 0.88 / 2.92 1.13 / 4.34 1.29 / 3.88 1.44 / 5.25 1.00 / 3.02

Table 2. Full results for 7Scenes. Table shows the median rotation (deg.) and translation (cm) errors for each scene in the 7Scenes dataset
for the experiment in Section 4.4 in the main paper.


