
Diffusion-EDFs: Bi-equivariant Denoising Generative
Modeling on SE(3) for Visual Robotic Manipulation

Supplementary Material

A. Bi-equivariance

For robust pick-and-place manipulation, the trained policy needs to be generalizable to previously unseen configurations of
the target objects to pick/place. This can be achieved by inferring end-effector poses that keep the relative pose between the
grasped object and the placement target invariant. Note that in our formulation, picking is essentially a special case of placing
tasks, in which the gripper is placed at appropriate grasp points of the target object to pick with an appropriate orientation.

Consider the scenario in which the policy is trained with a demonstration (gwe,Os,Oe) in which gwe is the end-effector
pose, and Os and Oe are respectively the point cloud observations of the scene and grasp. We denote the world frame using
subscript w and the end-effector frame using subscript e. Note that Os is observed in frame w and Oe in frame e. Now, let the
placement target be moved by ∆g = gw′w, inducing the transformation of the observation Os → ∆g Os. This is equivalent
to changing the world reference frame from w to w′ with respect to the observation. Therefore, the end-effector pose should
also be transformed equivariantly as gwe → gw′e = ∆g gwe (see Fig. 6-(a)). This scene equivariance is also referred to as
left equivariance [37, 61], as the transformation ∆g comes to the left side of gwe.

On the other hand, consider the transformation of the grasped object ∆g = ge′e, which induces the transformation of the
observation Oe → ∆g Oe. This is equivalent to changing the end-effector reference frame from e to e′ with respect to the
observation. In the world frame, this corresponds to the transformation of the end-effector pose by gwe → gwe′ = gwe∆g−1

(see Fig. 6-(b)). This grasp equivariance is also referred to as right equivariance [37, 61], as the transformation ∆g−1 comes
to the right side of gwe. Combining these left and right equivariance conditions, we obtain the bi-equivariance condition,
which can be formally expressed in a probabilistic form as Eq. (10).

Figure 6. Scene Equivariance and Grasp Equivariance. (a) The end-effector pose must follow the transformation of the placement target
within the scene. This scene equivariance can be achieved by multiplying the transformation ∆g on the left side of the end-effector pose.
Therefore, we also refer to this property as the left equivariance. (b) The end-effector pose must move contravariantly to the transformation
of the grasped object to compensate for the changes. This grasp equivariance involves the inverse transformation ∆g−1 coming to the
right side of the end-effector pose. Therefore, we also refer to this property as the right equivariance.

B. Analytic Form of the Target Score in Eq. (21)

In this section, we provide the analytic form of the target score function in Eq. (21)

∇ logBt(g
−1
ed g−1

0 gged) (34)

By definition, the i-th component of the target score function is calculated as follows:

Li logBt(g
−1
ed g−1

0 gged) =
d

dϵ

∣∣∣∣
ϵ=0

logBt

(
g−1
ed g−1

0 g exp[ϵêi]ged
)

=
d

dϵ

∣∣∣∣
ϵ=0

logBt

(
g−1
ed g−1

0 g ged exp[ϵAdg−1
ed
êi]

)
=

[
LAd

g
−1
ed

êi
logBt

] (
g−1
ed g−1

0 gged
)

=

 6∑
j=1

[
Adg−1

ed

]
ji
Lj logBt

(
g−1
ed g−1

0 gged
)

=

6∑
j=1

[
Adg−1

ed

]
ji

[
Lj logBt

] (
g−1
ed g−1

0 gged
)

(35)

⇒ ∇ logBt(g
−1
ed g−1

0 gged) = [Adged]
−T

[∇ logBt] (g
−1
ed g−1

0 gged) (36)

Therefore, all we need is the score of the Brownian diffusion kernel ∇ logBt(g) which can be decomposed into its translation
and rotation parts using Eq. (5)

∇ logBt(g) = ∇ logN (p;µ = 0,Σ = tI) +∇ log IGSO(3)(R; ϵ = t/2) (37)

where ∇ logN (p;µ = 0,Σ = tI) = −p/t can be easily computed. A common practice for the calculation of the rotational
part ∇ log IGSO(3)(R; ϵ = t/2) is to use automatic differentiation packages [17, 34, 42, 61, 75, 84]. However, the explicit
form can be easily calculated without automatic differentiation packages.

Li log IGSO(3)(R; ϵ) =
Li IGSO(3)(R; ϵ)

IGSO(3)(R; ϵ)
(38)

Li IGSO(3)(R; ϵ) =

∞∑
l=0

(2l + 1) exp [−l(l + 1)ϵ]

[
(l + 1) sin(lθ)− l sin((l + 1)θ)

cos(θ)− 1

] [
−tr [R[êi]

∧]

2 sin θ

]
(39)

We denote the skew-symmetric matrix of the i-th so(3) basis êi as [êi]∧, whose matrix element is [êi]∧jk = −ϵijk where ϵijk
is the Levi-Civita symbol.

The derivation is as follows. First, we rewrite Eq. (6) with the character X (R) of SO(3) [85].

IGSO(3)(R; ϵ) =

∞∑
l=0

(2l + 1) exp [−l(l + 1)ϵ]Xl(R) (40)

Xl(R) = tr [Dl(R)] = sin

(
(2l + 1)

θ

2

)
/ sin(

θ

2
) (41)

θ ∈ (0, π) is the rotation angle of R. Now we calculate the Lie derivative of IGSO(3) as follows:

Li IGSO(3)(R; ϵ) =

∞∑
l=0

(2l + 1) exp [−l(l + 1)ϵ]Li Xl(R) (42)

Li Xl(R) =

[
(l + 1) sin(lθ)− l sin((l + 1)θ)

cos(θ)− 1

]
Li θ (43)

Li θ =

[
−1

sin θ

]
Li [cos θ] (44)

The last line can be easily calculated using cos θ = 1
2 (tr [R]− 1) and LV tr [R] = tr [R[V]∧].

Li [cos θ] =
1

2
(tr [R[êi]

∧]) (45)

Combining these results, one can derive Eq. (39). In practice, the infinite sum in Eq. (39) is approximated with
∑lmax

l=0

where lmax = 1000 ∼ 10000, which can be computed within a millisecond when appropriately parallelized. Although we
have derived Eq. (39) for θ = (0, π), the result can be asymptotically extended to θ = 0 and π as IGSO(3) is an infinitely
differentiable on SO(3) [55].

C. Proofs and Derivations

C.1. Proof of Proposition 1

Proof of the left invariance of the score function.

Li logP (∆g g|∆g · Os,Oe) =
d

dϵ

∣∣∣∣
ϵ=0

logP (∆g g exp [ϵêi]|∆g · Os,Oe)

=
d

dϵ

∣∣∣∣
ϵ=0

logP (g exp [ϵêi]|Os,Oe)

= Li logP (g|Os,Oe)

where we used P (∆g g|∆g · Os,Oe) = P (g|Os,Oe) in the second line.

Proof of the right equivariance of the score function.

Li logP (g∆g−1|Os,∆g · Oe) =
d

dϵ

∣∣∣∣
ϵ=0

logP (g∆g−1 exp [ϵêi]|Os,∆g · Oe)

=
d

dϵ

∣∣∣∣
ϵ=0

logP (g∆g−1 exp [ϵêi]∆g|Os,Oe)

=
d

dϵ

∣∣∣∣
ϵ=0

logP (g exp
[
ϵAd∆g−1 êi

]
|Os,Oe)

= LAd∆g−1 êi
logP (g|Os,Oe)

= L∑
j [Ad∆g−1]

ji
êj

logP (g|Os,Oe)

=

6∑
j=1

[
Ad∆g−1

]
ji
Lj logP (g|Os,Oe)

(∵ Linearity of Lie-derivatives [13] L∑
i viêi

=
∑

i vi Li)

⇒ ∇ logP (g∆g−1|Os,∆g · Oe) =
[
Ad∆g−1

]T ∇ logP (g|Os,Oe) = [Ad∆g]
−T ∇ logP (g|Os,Oe)

where we denote the (j, i)-th matrix element of Ad∆g−1 with
[
Ad∆g−1

]
ji

. We used P (g∆g−1|Os,∆g · Oe) = P (g|Os,Oe)

in the second line.

C.2. Proof of Proposition 2

It is straightforward to prove the bi-equivariance of the diffused marginal using the bi-invariance of the integral measure
(Haar measure) dg ∫

SE(3)

d(∆g g) =

∫
SE(3)

dg =

∫
SE(3)

d(g∆g) ∀∆g ∈ SE(3) (46)

where dg = dRdp = 1
8π2 (sinβ) dα dβ dγ dx dy dz in the rotation-translation coordinate with the Euler angles α, β, γ and

the frame origin x, y, z. See Chirikjian [12, 13, 14], Murray et al. [53] and Appendix A of Ryu et al. [61] for more details on
the bi-invariant integral measure of SE(3).

We first prove that the marginal is bi-equivariant if the kernel is bi-equivariant.

Proof of left equivariance.

Pt(g|Os,Oe) =

∫
SE(3)

dg0 Pt|0(g|g0,Os,Oe)P0(g0|Os,Oe)

=

∫
SE(3)

dg0 Pt|0(g|g0,Os,Oe)P0(∆g g0|∆g · Os,Oe) (∵ Eq. (10))

=

∫
SE(3)

dg0 Pt|0(∆g g|∆g g0,∆g · Os,Oe)P0(∆g g0|∆g · Os,Oe) (∵ Eq. (15))

=

∫
SE(3)

dg0 Pt|0(∆g g|g0,∆g · Os,Oe)P0(g0|∆g · Os,Oe) (∵ Eq. (46), ∆g g0 → g0)

= Pt(∆g g|∆g · Os,Oe)

Proof of right equivariance.

Pt(g|Os,Oe) =

∫
SE(3)

dg0 Pt|0(g|g0,Os,Oe)P0(g0|Os,Oe)

=

∫
SE(3)

dg0 Pt|0(g|g0,Os,Oe)P0(g0 ∆g−1|Os,∆g · Oe) (∵ Eq. (10))

=

∫
SE(3)

dg0 Pt|0(g∆g−1|g0 ∆g−1,Os,∆g · Oe)P0(g0 ∆g−1|Os,∆g · Oe) (∵ Eq. (15))

=

∫
SE(3)

dg0 Pt|0(g∆g−1|g0,Os,∆g · Oe)P0(g0|Os,∆g · Oe) (∵ Eq. (46), g0 ∆g−1 → g0)

= Pt(g∆g−1|Os,∆g · Oe)

Similarly, it can be proven that the kernel must be bi-equivariant (up to measure zero) to guarantee the bi-equivariance of
the diffused marginal for any arbitrary initial distribution dP0 = P0 dg0.

Proof.

Pt(g|Os,Oe) =

∫
SE(3)

dg0 Pt|0(g|g0,Os,Oe)P0(g0|Os,Oe)

Pt(∆g g|∆g · Os,Oe) =

∫
SE(3)

dg0 Pt|0(∆g g|g0,∆g · Os,Oe)P0(g0|∆g · Os,Oe)

=

∫
SE(3)

dg0 Pt|0(∆g g|g0,∆g · Os,Oe)P0(∆g−1 g0|Os,Oe) (∵ Eq. (10))

=

∫
SE(3)

dg0 Pt|0(∆g g|∆g g0,∆g · Os,Oe)P0(g0|Os,Oe) (∵ Eq. (46), g0 → ∆g g0)

Pt(g∆g−1|Os,∆g · Oe) =

∫
SE(3)

dg0 Pt|0(g∆g−1|g0,Os,∆g · Oe)P0(g0|Os,∆g · Oe)

=

∫
SE(3)

dg0 Pt|0(g∆g−1|g0,Os,∆g · Oe)P0(g0 ∆g|Os,Oe) (∵ Eq. (10))

=

∫
SE(3)

dg0 Pt|0(g∆g−1|g0 ∆g−1,Os,∆g · Oe)P0(g0|Os,Oe) (∵ Eq. (46), g0 → g0 ∆g−1)

⇒
∫
SE(3)

dg0 P0(g0|Os,Oe)×
[
Pt|0(g|g0,Os,Oe)− Pt|0(∆g g|∆g g0,∆g · Os,Oe)

]
= 0∫

SE(3)

dg0 P0(g0|Os,Oe)×
[
Pt|0(g|g0,Os,Oe)− Pt|0(g∆g−1|g0 ∆g−1,Os,∆g · Oe)

]
= 0

Therefore, for this equation to hold for any arbitrary bi-equivariant initial distribution dP0 = P0 dg0, the diffusion kernel
must be bi-equivariant ∀g,∆g ∈ SE(3)

Pt|0(g|g0,Os,Oe)− Pt|0(∆g g|∆g g0,∆g · Os,Oe) = 0 (47)

Pt|0(g|g0,Os,Oe)− Pt|0(g∆g−1|g0 ∆g−1,Os,∆g · Oe) = 0 (48)

⇒ Pt|0(g|g0,Os,Oe) = Pt|0(∆g g|∆g g0,∆g · Os,Oe) = Pt|0(g∆g−1|g0 ∆g−1,Os,∆g · Oe) (49)

C.3. Non-existence of Bi-Invariant Diffusion Kernels on SE(3)

Note that any left invariant kernel Pt|0(g|g0) can be written in a univariate form Kt(g
−1
0 g).

Pt|0(∆g g|∆g g0) = Pt|0(g|g0) ∀∆g, g ⇒ Pt|0(g|g0) = Pt|0(g
−1
0 g|I) ∀ g (50)

The right invariance requires this kernel to satisfy Kt(∆g g∆g−1) = Kt(g), meaning that it is a class function, which does
not exist for L2(SE(3)) [12, 40].

C.4. Proof of Proposition 3

Proof. The right equivariance can be proved as follows.

Pt|0(g|g0,Os,Oe) =

∫
SE(3)

dgedP (ged|g−1
0 · Os,Oe)Kt(g

−1
ed g−1

0 gged)

=

∫
SE(3)

dgedP (∆g ged|(∆g g−1
0) · Os,∆g · Oe)Kt(g

−1
ed g−1

0 gged) (∵ Eq. (18))

=

∫
SE(3)

dgedP (ged|(∆g g−1
0) · Os,∆g · Oe)Kt(g

−1
ed

(
g0 ∆g−1

)−1 (
g∆g−1

)
ged)

(∵ invariance of integral
∫
dged under ged → ∆g−1 ged)

= Pt|0(g∆g−1|g0 ∆g−1,Os,∆g · Oe)

The left equivariance proof is straightforward using the following equations:

g−1
0 g = (∆g g0)

−1
(∆g g) (51)

g−1
0 · Os = (∆g g0)

−1 · (∆g · Os) (52)

C.5. Proof of Proposition 4

Note that the Brownian diffusion kernel Bt(g) is right-invariant to rotation, that is,

Bt

(
(g0 ∆R)−1 (g∆R)

)
= Bt(g

−1
0 g)

⇒ Bt(∆R−1 g∆R) = Bt(g) ∀∆R ∈ SO(3)
(53)

where we abuse the notation to denote the action of a pure rotation ∆R on g = (p, R) as ∆Rg = (∆Rp,∆RR) and
g∆R = (p, R∆R). Eq. (53) holds because the Gaussian distribution in Eq. (5) is rotation-invariant and IGSO(3) in Eq. (6)
is a linear combination of characters of SO(3), which are class functions due to the permutation invariance of trace operations
(see Supp. B and C.3). Consider the following diffusion kernel with the equivariant origin selection mechanism in Eq. (20):

Pt|0(g|g0,Os,Oe) =

∫
R3

dpedP
(
ped|g−1

0 · Os,Oe

)
Bt

(
(g0 ◁ ped)

−1
(g ◁ ped)

)
(54)

where ◁ped : SE(3) → SE(3) denotes the right action of a pure translation ped ∈ R3 onto g = (p, R) ∈ SE(3) such that

g ◁ ped =

[
R p
∅ 1

] [
I ped
∅ 1

]
=

[
R Rped + p
∅ 1

]
(55)

Note that the following equation holds for all g1, g2 ∈ SE(3) and ped ∈ R3:

(g1 g2) ◁ ped =

[
R1 p1
∅ 1

] [
R2 p2
∅ 1

] [
I ped
∅ 1

]
=

[
R1 R2 R1 (R2ped + p2) + p1

∅ 1

]
=

[
R1 p1
∅ 1

] [
I g2 ped
∅ 1

] [
R2 0
∅ 1

]
= (g1 ◁ (g2 ped)) ∆R2

(56)

The bi-equivariance of Pt|0 can be proved using Eq. (53) and Eq. (56).

Proof. The proof of left equivariance is straightforward as g−1
0 ·Os = (∆g g0)

−1 · (∆g · Os). The proof of right equivariance
is as follows:

Pt|0(g∆g−1|g0 ∆g−1,Os,∆g · Oe)

=

∫
R3

dpedP
(
ped|(∆g g−1

0) · Os,∆g · Oe

)
Bt

((
(g0 ∆g−1) ◁ ped

)−1 (
(g∆g−1) ◁ ped

))
=

∫
R3

dpedP
(
∆g−1 ped|g−1

0 · Os,Oe

)
Bt

((
(g0 ∆g−1) ◁ ped

)−1 (
(g∆g−1) ◁ ped

))
(∵ Eq. (20))

=

∫
R3

dpedP
(
∆g−1 ped|g−1

0 · Os,Oe

)
Bt

(
∆R

(
g0 ◁

(
∆g−1 ped

))−1 (
g ◁

(
∆g−1 ped

))
∆R−1

)
(∵ Eq. (56))

=

∫
R3

dpedP
(
∆g−1 ped|g−1

0 · Os,Oe

)
Bt

((
g0 ◁

(
∆g−1 ped

))−1 (
g ◁

(
∆g−1 ped

)))
(∵ Eq. (53))

=

∫
R3

dpedP
(
ped|g−1

0 · Os,Oe

)
Bt

(
(g0 ◁ (ped))

−1
(g ◁ (ped))

)
(∵ invariance of Euclidean integral under roto-translation, ped → ∆g ped)

= Pt|0(g|g0,Os,Oe)

In fact, any left-invariant kernel that is also right-invariant to rotation as in Eq. (53) can be used.

C.6. Derivation of Eq. (22)

We first show that s∗t (g|Os,Oe) = Eg0,ged|g,Os,Oe

[
∇ logKt(g

−1
ed g−1

0 gged)
]

using a simple variational calculus.

Proof. Let δst(g|Os,Oe) be a perturbation of the score model st(g|Os,Oe). For the optimal score model s∗t (g|Os,Oe), any
small perturbation would result in zero perturbation of the objective.

s∗t (g|Os,Oe) = argmin
st(g|Os,Oe)

Jt [st(g|Os,Oe)]

⇒ δJt [s
∗
t (g|Os,Oe)] = 0 ∀ δs∗t (g|Os,Oe)

(57)

The explicit form of the perturbation of the objective with regard to δst(g|Os,Oe) is written as follows:

δJt [st(g|Os,Oe)] = δ

(
Eg,g0,ged,Os,Oe

[
1

2

∥∥st(g|Os,Oe)−∇ logKt(g
−1
ed g−1

0 gged)
∥∥2])

= Eg,Os,Oe

[
δst(g|Os,Oe) ·

[
st(g|Os,Oe)− Eg0,ged|g,Os,Oe

[
∇ logKt(g

−1
ed g−1

0 gged)
]]] (58)

Therefore, assuming Pt(g|Os,Oe) > 0 ∀g,Os,Oe, the optimal score model must be

s∗t (g|Os,Oe) = Eg0,ged|g,Os,Oe

[
∇ logKt(g

−1
ed g−1

0 gged)
]

(59)

We now show that Eg0,ged|g,Os,Oe

[
∇ logKt(g

−1
ed g−1

0 gged)
]
= ∇ logPt(g|Os,Oe).

Proof.

Eg0,ged|g,Os,Oe

[
∇ logKt(g

−1
ed g−1

0 gged)
]

=

∫
dg0

∫
dged P (g0, ged|g,Os,Oe; t)

∇Kt(g
−1
ed g−1

0 gged)

Kt(g
−1
ed g−1

0 gged)

=

∫
dg0

∫
dged

[
P (g|g0, ged,Os,Oe; t)

P (g0, ged|Os,Oe)

Pt(g|Os,Oe)

]
∇Kt(g

−1
ed g−1

0 gged)

Kt(g
−1
ed g−1

0 gged)

=

∫
dg0

∫
dged((((((((((

P (g|g0, ged,Os,Oe; t)
P (g0, ged|Os,Oe)

Pt(g|Os,Oe)

∇Kt(g
−1
ed g−1

0 gged)

((((((((
Kt(g

−1
ed g−1

0 gged)

(∵ P (g|g0, ged,Os,Oe; t) = P (g|g0, ged; t) = Kt(g
−1
ed g−1

0 gged))

=
1

Pt(g|Os,Oe)

∫
dg0

∫
dged P (g0, ged|Os,Oe)∇Kt(g

−1
ed g−1

0 gged)

=
1

Pt(g|Os,Oe)
∇
∫

dg0

∫
dged P (g0, ged|Os,Oe)Kt(g

−1
ed g−1

0 gged)

=
1

Pt(g|Os,Oe)
∇
∫

dg0 P0(g0|Os,Oe)

∫
dged P (ged|g−1

0 · Os,Oe)Kt(g
−1
ed g−1

0 gged)

=
1

Pt(g|Os,Oe)
∇Pt(g|Os,Oe) (∵ Eq. (17) and Eq. (14))

=
∇Pt(g|Os,Oe)

Pt(g|Os,Oe)
= ∇ logPt(g|Os,Oe)

Therefore, we prove that s∗t (g|Os,Oe) = ∇ logPt(g|Os,Oe).

C.7. Proof of Proposition 5

For readers’ convenience, we reproduce the bi-equivariance conditions for the score functions in Proposition 1 with explicit
components.

s(∆g g|∆g · Os,Oe) = s(g|Os,Oe) (60)

s(g∆g−1|Os,∆g · Oe) = [Ad∆g]
−T
s(g|Os,Oe)

=

[
∆R ∅

[∆p]∧∆R ∆R

] [
sν(g|Os,Oe)
sω(g|Os,Oe)

]
= ∆R sν(g|Os,Oe)⊕ [∆R sω(g|Os,Oe) + ∆p ∧∆R sν(g|Os,Oe)]

(61)

where we used the fact that the inverse transpose of the adjoint matrix is as follows [51, 53]:

[Ad∆g]
−T

=

[
∆R ∅

[∆p]∧∆R ∆R

]
(62)

We begin by proving the bi-equivariance of the linear (translational) score term

Proof. The left invariance of the linear score model is proved as

sν;t(∆g g|∆g · Os,Oe) =

∫
R3

d3x ρν;t(x|Oe) s̃ν;t(∆g g,x|∆g · Os,Oe)

=

∫
R3

d3x ρν;t(x|Oe) s̃ν;t(g,x|Os,Oe) (∵ Eq. (27))

= sν;t(g|Os,Oe)

The right equivariance of the linear score model is proved as

sν;t(g∆g−1|Os,∆g · Oe) =

∫
R3

d3x ρν;t(x|∆g · Oe) s̃ν;t(g∆g−1,x|Os,∆g · Oe)

=

∫
R3

d3x ρν;t(∆g x|∆g · Oe) s̃ν;t(g∆g−1,∆g x|Os,∆g · Oe)

(∵ invariance of Euclidean integral under roto-translation x→ ∆g x)

=

∫
R3

d3x ρν;t(x|Oe) ∆R s̃ν;t(g,x|Os,Oe) (∵ Eq. (26) and Eq. (28))

= ∆R

∫
R3

d3x ρν;t(x|Oe) s̃ν;t(g,x|Os,Oe)

= ∆R sν;t(g|Os,Oe)

Let the angular (rotational) score model be decomposed into the spin term sspin;t and the orbital term sorbital;t as in Eq. (25).
The bi-equivariance of spin term in the angular (rotational) score model

sspin;t(g|Os,Oe) =

∫
R3

d3x ρω;t(x|Oe) s̃ω;t(g,x|Os,Oe) (63)

sspin;t(∆g g|∆g · Os,Oe) = sspin;t(g|Os,Oe) (64)

sspin;t(g∆g−1|Os,∆g · Oe) = ∆R sspin;t(g|Os,Oe) (65)

can be proven in a similar fashion to the linear score model. It can be shown that the orbital term satisfies the following
bi-equivariance condition

sorbital;t(g|Os,Oe) =

∫
R3

d3x ρν;t(x|Oe) x ∧ s̃ν;t(g,x|Os,Oe) (66)

sorbital;t(∆g g|∆g · Os,Oe) = sorbital;t(g|Os,Oe) (67)

sorbital;t(g∆g−1|Os,∆g · Oe) = ∆p ∧∆R sorbital;t(g|Os,Oe) (68)

Proof. The left invariance is straightforward, as the linear score field s̃ν;t is left-invariant as Eq. (27). The right equivariance
can be proved as follows

sorbital;t(g∆g−1|Os,∆g · Oe)

=

∫
R3

d3x ρν;t(x|∆g · Oe) x ∧ s̃ν;t(g∆g−1,x|Os,∆g · Oe)

=

∫
R3

d3x ρν;t(∆g−1 x|Oe) x ∧∆R s̃ν;t(g,∆g−1 x|Os,Oe) (∵ Eq. (26) and Eq. (28))

=

∫
R3

d3x ρν;t(x|Oe) (∆Rx+∆p) ∧∆R s̃ν;t(g,x|Os,Oe)

(∵ invariance of Euclidean integral under roto-translation x→ ∆g x = ∆Rx+∆p)

= ∆R

[∫
R3

d3x ρν;t(x|Oe) x ∧ s̃ν;t(g,x|Os,Oe)

]
+∆p ∧∆R

∫
R3

d3x ρν;t(x|Oe) s̃ν;t(g,x|Os,Oe)

(∵ Rx ∧Ry = R (x ∧ y) ∀x,y ∈ R3)

= ∆R sorbital;t(g|Os,Oe) + ∆p ∧∆R sν;t(g|Os,Oe)

As a result, the angular (rotational) score model

sω;t(g|Os,Oe) = sorbital;t(g|Os,Oe) + sspin;t(g|Os,Oe) (69)

satisfies the following bi-equivariance

sω;t(∆g g|∆g · Os,Oe) =sω;t(g|Os,Oe) (70)

sω;t(g∆g−1|Os,∆g · Oe) =∆R [sorbital;t(g|Os,Oe) + sspin;t(g|Os,Oe)] + ∆p ∧∆R sν;t(g|Os,Oe)

=∆R sω;t(g|Os,Oe) + ∆p ∧∆R sν;t(g|Os,Oe)
(71)

Hence, we have proven Proposition 5 that the score model in Eq. (23) is bi-equivariant, satisfying Eq. (60) and Eq. (61).

C.8. Proof of Proposition 6

Proof.

s̃□;t(∆g g,x|∆g · Os,Oe) = ψ□;t(x|Oe) ⊗(→1)
□;t D(R−1∆R−1)φ□;t(∆g g x|∆g · Os)

= ψ□;t(x|Oe) ⊗(→1)
□;t D(R−1∆R−1)D(∆R)φ□;t(g x|Os) (∵ Eq. (3))

= ψ□;t(x|Oe) ⊗(→1)
□;t D(R−1

�����
∆R−1∆R)φ□;t(g x|Os) (∵ Eq. (1))

= s̃□;t(g,x|Os,Oe)

s̃□;t(g∆g−1,∆g x|Os,∆g · Oe)

= ψ□;t(∆g x|∆g · Oe) ⊗(→1)
□;t D(∆RR−1)φ□;t(g�����

∆g−1 ∆g x|Os)

= D(∆R)ψ□;t(x|Oe) ⊗(→1)
□;t D(∆RR−1)φ□;t(g x|Os) (∵ Eq. (3))

= D(∆R)ψ□;t(x|Oe) ⊗(→1)
□;t D(∆R)D(R−1)φ□;t(g x|Os) (∵ Eq. (1))

= D1(∆R)
[
ψ□;t(x|Oe) ⊗(→1)

□;t D(R−1)φ□;t(g x|Os)
]

(∵ [D(R)v]⊗(→l) [D(R)w] = Dl(R)
[
v ⊗(→l) w

]
)

= ∆R s̃□;t(g,x|Os,Oe)

where in the last line we assume that the degree-1 Wigner D-matrix D1(·) is in the real basis with x − y − z axis ordering.
Note that the last line only holds in this specific choice of basis. Therefore, the type-1 or higher descriptors of the two EDFs
must be defined in this basis.

D. Implementation Details
D.1. Score Field Model Details

We assume that the output of the score field model in Eq. (29) is a dimensionless quantity. Therefore, we obtain the dimen-
sionful score by taking

s̃ν;t →
1

L
√
t
s̃ν;t, s̃ω;t →

1√
t
s̃ω;t

where L is the characteristic length scale unit. The reason for dividing 1/
√
t is because the norm of the target score tend

to scale with O(1/
√
t). Likewise, we divide the linear score field by L because score field is a gradient and thus scales

reciprocally to the characteristic length scale.
For computational efficiency, we use identical EDFs for □ = ω, ν in Eq. (29). In addition, we remove the time dependence

of the grasp EDF ψt(x|Oe) so that its field value is computed only once at the beginning of the denoising process. In

conclusion, our actual implementations of Eq. (32) and Eq. (33) are as follows:

sν;t(g|Os,Oe) =
1

L
√
t

∑
q∈Q(Oe)

w(q|Oe)
[
ψ(q|Oe) ⊗(→1)

ν;t D(R−1)φt(g q|Os)
]

(72)

sω;t(g|Os,Oe) =
1√
t

∑
q∈Q(Oe)

w(q|Oe)
q

L
∧
[
ψ(q|Oe) ⊗(→1)

ν;t D(R−1)φt(g q|Os)
]

+
1√
t

∑
q∈Q(Oe)

w(q|Oe)
[
ψ(q|Oe) ⊗(→1)

ω;t D(R−1)φt(g q|Os)
] (73)

D.2. Sampling with Annealed Langevin Dynamics

It is known to be difficult and unstable to train and sample with the score function for a sparse distribution [38, 71]. To address
this issue, Annealed Langevin Markov Chain Monte Carlo [71] leverages the score of the diffused marginal Pt instead of P0.
A diffused marginal Pt(g) for a diffusion kernel Pt|0(g|g0) is defined on the SE(3) manifold as

Pt(g) =

∫
SE(3)

dg0Pt|0(g|g0)P0(g0). (74)

We utilize the trained score function st(g) = ∇ logPt(g) for the annealed Langevin MCMC on SE(3) [75] as

gτ+dτ = gτ exp

[
1

2
st(τ)(gτ |Os,Oe)dτ + dW

]
. (75)

where t(τ) is the diffusion time scheduling, which is gradually annealed to zero as τ → ∞, such that t(τ = ∞) = 0. This
process will converge to P0(g) regardless of the initial distribution if it is annealed sufficiently slowly and lim

t→0
Pt = P0. This

SDE can be discretized using the forward Euler-Maruyama method such that

gn+1 = gn exp

[
1

2
st[n](gn|Os,Oe)α[n] +

√
α[n]zn

]
, zn ∼ N (0, I) (76)

where t[n] and α[n] are respectively the diffusion time and Langevin step size, both of which are scheduled according to
the step count n. A commonly used scheduling scheme is taking α[n] ∝ t[n] with either a linear or log-linear t[n] schedule
[30, 71, 75]. However, the convergence is very slow with this scheduling. Therefore, we use α[n] ∝ t[n]k1 schedule with
a hyperparameter k1 < 1. To suppress the instability caused by large step sizes when t is small, we also gradually lower
the temperature3 of the process. This can be done by using

√
α[n]T [n]zn instead of

√
α[n]zn for the noise term with the

temperature schedule T [n] = t[n]k2 , where k2 ≥ 0 is another hyperparameter. Intuitively, this makes the sampling process to
smoothly transition into a simple gradient descent optimization as t[n] → 0, and hence T [n] → 0. We empirically found that
this strategy significantly improves the convergence time without compromising the accuracy and diversity of the sampled
poses. The resulting sampling algorithm with a small number ϵ is

gn+1 = gn exp
[ϵ
2
st[n](gn|Os,Oe)t[n]

k1 +
√
ϵ t[n]

k1+k2
2 zn

]
, zn ∼ N (0, I) (77)

We use k1 = 0.5 and k2 = 1.0 for the step size and temperature scheduling. For the diffusion time t[n], we use piecewise
linear scheduling. For example, we linearly schedule the diffusion time for t = 1 to t = 0.1 and then with t = 0.1 to t = 0.01.
Similar to diffusion-based image generation models, we separate a low-resolution model and high-resolution model instead
of using a single model. We use the low-resolution model for higher t and the high-resolution model for lower t. Similar to
Ryu et al. [61], we solve Eq. (77) in the quaternion-translation parameterization of SE(3) instead of performing the actual
exponential mapping in Eq. (77).

D.3. Architecture details

See Fig. 7 for the illustration of each module used in Fig. 2.

3This temperature annealing should not be confused with that of the ‘annealed’ Langevin MCMC in which the diffusion time t is decreased.

Figure 7. Overview of Modules Used in Multiscale EDF. (a) We employ Equiformer [45] to achieve SE(3)-equivariance in our model.
(b) We use an equivariant feed forward network with gate activation from Equiformer. (c) We use radius graph to construct graph from
points. Graph edge length and orientation are respectively encoded by a radial encoder and spherical harmonics [26, 45, 74]. (d) Multiple
equiformer layers are stacked and form the equivariant U-Net Block. FPS pooling is used in downward blocks to obtain coarse-grained
destination points from source points in lower scale-space.

D.4. Diffusion Frame Selection Mechanism

In this section, we provide further details on the diffusion frame/origin selection mechanism.

Necessity of Diffusion Frame/Origin Selection Mechanism. We first discuss why a diffusion frame/origin selection
mechanism is necessary for our diffusion model on the SE(3) manifold. For simplicity, we confine our argument only
to the diffusion origin selection mechanism as Proposition 4 suggests.

In Sec. 3.3, we introduced the concept of diffusion frame/origin selection mechanism to achieve bi-equivariance in the
diffusion process. However, the diffusion frame/origin selection has further implication, even for non-equivariant diffusion
models on the SE(3) manifold. As illustrated in Fig. 8, an arbitrarily small rotational perturbation may result in an arbitrarily
large orbital displacement near the critical region depending on the choice of the origin, leading to an unstable diffusion
and denoising process. This is in contrast to typical Euclidean diffusion models because vector addition is a commutative
operation, and hence origin fixing has no effect. Therefore, a proper diffusion process for our problem must include a
diffusion origin selection procedure to minimize the orbital effect of rotation near critical regions.

A natural selection of the diffusion origin for manipulation tasks is the origin of the end-effector frame itself. However,
this origin selection is not equivariant to the grasped object, making our diffusion kernel only left-equivariant and not right-
equivariant. Another natural diffusion origin is the centroid of the point cloud, which was utilized by Yim et al. [84] and
Corso et al. [17] for protein docking problems. Indeed, this is a special case of an equivariant origin selection mechanism that
satisfies Eq. (19). However, as pointed out by Ryu et al. [61] and Kim et al. [37], centroids are often dominated by the global
geometry rather than the critical sub-geometry of the target objects. Please recall that this is why R-NDFs suffer without
object segmentation. While the protein-ligand interaction problem in Yim et al. [84] and Corso et al. [17] has additional
torsional degrees of freedom to debias this centroid artifact, it won’t translate to our problem since the points in Oe are only
actuated by the end-effector pose g.

Figure 8. Necessity of Diffusion Origin Selection Mechanism. (a) A small rotational diffusion may result in arbitrarily large orbital dis-
placement near the critical region depending on the diffusion origin. (b) We employ a contact-based diffusion origin selection mechanism.
This not only allows bi-equivariant diffusion process but also stabilizes learning by minimizing the orbital impact of the rigid body rotation
near the critical regions.

Equivariant Diffusion Origin Selection Mechanism with Contact Heuristics. An important quality of a good diffusion
origin selection mechanism is that the selected origin should not be too far away from the critical contact-rich region. As
illustrated in Fig. 8, even a small rotational diffusion may take the critical region of the grasped object (the handle of the mug)
far away from the placement target (the tip of the hanger), making training unstable. Although this problem can be resolved
by reducing the rotational noise scale of the diffusion process, it requires meticulous task-specific hyperparameter tuning.
Furthermore, as can be seen in Eq. (61), the rotational score consists of the pure rotational term and the orbital term. By
studying the orbital term, one may notice that this term is non-dimensionalized by the product of the displacement term ∆p,
which is proportional to the length unit, and the translational score sν , which is reciprocal to the length unit. Although these
two dimensionful quantities neatly cancel out each other’s unit, this structure inevitably increases the variance of the score
estimation when the displacement term ∆p is too large. For instance, a small translational score term in the reference frame
of the critical region may induce a large rotational score term in the end-effector frame if the displacement ∆p between these
two frames is large. This is natural because a small rotation in the end-effector frame can dramatically change the probability
of the pose if ∆p is large. Therefore, it is always optimal to work in a diffusion origin near the critical region, such that ∆p
is kept minimal. This is the reason why we propose a contact-based diffusion origin selection mechanism in Eq. (30), which
selects the origin near the important contact-rich sub-geometries.

We find that this origin selection mechanism stabilizes training by enabling Diffusion-EDFs to correctly identify important
contact rich sub-geometries from the grasp observation Oe. This can be verified by visualizing the strength of the query
weight field. Fig. 9 illustrates the query points in colors according to their query weights. Query points with high weights
are represented in cyan and those with near-zero weights are in black. As can be seen in the figure, the query weight field of
the trained Diffusion-EDFs successfully assign high weight to the mug’s handle, which is the most significant sub-geometry
when placing it on a hanger.

E. Experiment Details
E.1. Simulation Experiment Details

In this section, we provide further details on the simulated benchmark experiments in Sec. 5.

E.1.1 Simulation Environment

Evaluations are performed in a simulated enviroment using SAPIEN [83] with nine ceiling-mounted depth cameras. We
assume a perfect observation to remove the influence of point cloud processing pipelines, which is orthogonal to our research.
We also remove the impact of robot’s kinematic constraints by using a floating gripper-only robot instead of simulating the
full robot. In addition, we turn off the collision between the environment and allow the robot to teleport to the pre-pick/place
pose in order to get rid of failures related to motion planning. We evaluate the success of pick or place by turning off the
collision between the environment (including the table) and the target object to manipulate, and measuring the object’s z-axis
position. If the object is not firmly grasped by the gripper or is not placed on the intended placement target, the object will
fall after removing the environmental collision. Therefore, we measure the z-axis position to automatically assess whether
the object has not fallen, meaning that the manipulation has succeeded.

(a) Query points of a real-world mug observation. (b) Query points of a real-world bottle observation.

Figure 9. Learned Query Points. The figure depicts the point clouds of a real mug and bottle with their query points visualized in colors
according to their weights. The query points with the highest weight values are illustrated in cyan. The query weight field of the trained
Diffusion-EDFs assigns high weight to (a) the mug’s handle, which is the most significant sub-geometry when placing it on a hanger, and
(b) the bottom of the bottle, which is the most significant sub-geometry when placing it on a shelf.

E.1.2 Method Details

For each task, we train the models using ten human-generated demonstrations, in which five object instances in only upright
poses are used. In other words, each of the five object instances is demonstrated for two different pick/place poses. In the
training data set, we do not use distracting objects. We used a custom-built web-based GUI to collect human demonstrations.

Diffusion-EDFs. We only use ten human demonstrations to train Diffusion-EDFs in a fully end-to-end manner. No addi-
tional prior knowledge such as pre-training, object segmentation, pose estimation or data augmentation is used for Diffusion-
EDFs. For preprocessing, we use simple voxel downsampling to reduce the number of points.

R-NDFs. For R-NDFs, we use the pre-trained weights from the original implementation of Simeonov et al. [68]. These
weights were trained with a self-supervised learning method that relies on massive amount (150 gigabytes) object geometry
that are specific to the target object categories (mug, bowl, bottle; 50 gigabytes for each). Although we do not use bowls
in our experiment, we still use the weights trained from all three object categories, which achieve better performance than
weights trained from only a single object category [67, 68]. Still, we observe that R-NDFs fail to place the mug on our
mug hanger. We presume that this is due to the discrepancy of the hanger’s shape in our experiment and the ones used
for pre-training, which were procedurally generated [68]. Therefore, we do R-NDFs an additional favor of using the pre-
trained hanger instances instead of our hanger for the evaluation. Lastly, we also tried to naively pre-train the NDFs using
the reconstructed meshes from the point clouds in our ten task demonstrations, but resulted in suboptimal performance (less
than 5% success rate). These attempts show the importance of the end-to-end trainability of EDFs [61] and Diffusion-EDFs.
R-NDFs cannot be used for uncommon object categories, as they require immense amount of category-specific data for pre-
training. Procedural generation has also turned out to be unable to resolve this problem because it cannot cover all variations
in the category, which was evident in the case of the mug hanger mentioned above.

We also evaluate R-NDFs both with and without object segmentation. It should be noted that the ability to infer without
object segmentation is important not only because of its convenience. As we have demonstrated in our real hardware experi-
ments in Sec. 5, it allows the model to understand scene-level contexts beyond a single target object. The experimental results
in Tab. 1 clearly show that R-NDFs are unable to make inference without object segmentation. As pointed out by Ryu et al.
[61], we presume this is because of the violation of locality in R-NDFs, such as centroid subtraction.

SE(3)-Diffusion Fields. In contrast to R-NDFs, we train SE(3)-Diffusion Fields [75] using only the ten demonstrations
as Diffusion-EDFs. Following Urain et al. [75], we jointly train the model to match both the signed distance function and
the score function. We specifically use the PoiNt-SE(3)-DiF variant in the original paper [75]. Although this model utilizes
SO(3)-equivariant point cloud encoder based on VN-PointNet [19], the overall architecture is not equivariant. Therefore, we
use SO(3) rotational data augmentation to complement the lack of equivariance.

Similar to R-NDFs, we evaluate SE(3)-Diffusion Fields both with and without object segmentation. With object seg-
mentation, SE(3)-Diffusion Fields could learn to pick up the target object, although the success rates are much lower than
Diffusion-EDFs. Without object segmentation, they achieve success rates lower than 15% for all scenarios.

E.2. Real Hardware Experiment Details

E.2.1 Experimental Setup

We use a Franka Emika Panda robot arm with two Intel RealSense D415 RGB-D cameras. The first camera is attached to the
wrist of the robot. The robot moves around the workspace to observe RGB-D images of the scene from multiple viewpoints.
We employ RTAB-Map [41], a 3D SLAM technique, to convert these observations into a point cloud of the scene. Rather
than relying on visual odometry, we take advantage of the forward kinematics solution from the robot’s joint encoders, which
is more precise. Although we use 3D SLAM-based approach in our experiments, this procedure can be skipped if multiple
well-calibrated external cameras are available. The second camera is installed on the table to observe the point cloud of the
robot’s gripper. This external camera is calibrated to the ArUco marker [28] frame attached to the robot’s end-effector. All
the point clouds are post-processed using Open3D [88], in which we remove statistical outliers and apply voxel filtering. We
also apply hue and lightness augmentation for the training data to obtain robustness under light condition changes.

In our experimental procedure, the robot first moves along a predefined trajectory to observe the scene. RTAB-Map is used
to convert these observations into the point cloud of the scene in real time. Diffusion-EDFs take this point cloud to generate
the end-effector poses to pick the target object. After picking the object, the robot moves to the predefined grasp observation
pose. The robot then rotates its grasped object by 360◦, and the external camera observes it. These observations are then
registered into the grasp point cloud. For the scene point cloud, we use the same one that we used to infer the pick pose. With
these two point clouds, Diffusion-EDFs infer the end-effector poses to place the grasped object onto the placement target.
For the collection of human demonstrations, we follow a procedure similar to that in the aforementioned inference pipeline.
The only difference is that the target pose demonstration is manually provided by a human instead of Diffusion-EDFs.

E.2.2 System Engineering

Motion Primitives. While it is theoretically possible to generate a collision-free motion plan for any reachable goal pose,
it is challenging in reality due to the imprecise nature of point cloud observations. Therefore, determining how to approach
the target pose is also an important problem. As we focus only on the problem of inferring the target pose itself in this work,
we simply assume that we already have task-specific motion primitives to approach the generated goal pose. In all three real-
world tasks, we use a simple motion primitive of picking along the end-effector’s z-axis direction (the direction in which the
gripper is pointing), and placing the target object in the top-down direction. The robot first moves to the pre-pick/place pose
by following the collision-free trajectory found by an off-the-shelf motion planner. The motion primitives are then used to
approach the generated target pick/place pose from the previous pre-pick/place pose. After successful picking or placing, we
initiate post-pick/place primitives. We simply lift up the end-effector for the post-pick primitive. For the post-place primitive,
we retract the end-effector towards the opposite direction that was taken in the pre-pick manuever. We use MoveIt [16] for
motion planning and use the TOPP-RA [57] algorithm to time-parameterize our waypoint-based motion primitives.

Although we use predefined motion primitives, not every problem can be solved in this way. Therefore, more general
approach should also encompass learning not only the target pose but also the approach direction. We expect that our score
model in Eq. (23) can be used for this purpose with slight modifications. The approach direction can be represented as the
displacement between the pre-pick/place pose and the target pose. This displacement can be effectively expressed as an se(3)
Lie algebra vector. Therefore, our score model can be modified to equivariantly infer this Lie algebra vector that represents
the approach direction. We leave this research for future studies.

Energy-based Critic. Due to the collision and kinematic constraint of the robot, not every pose generated by Diffusion-
EDFs are feasible. Although we ignored this problem in our simulation experiment, this problem must be considered in real
robot applications. Therefore, similar to Urain et al. [75] and Ryu et al. [61], we generate multiple samples in parallel and
reject infeasible poses one by one until a reachable pose is found.

However, it is difficult to ensure convergence for every generated sample as we use a limited number of Langevin steps to
achieve reasonable inference time (5∼17 seconds). The number of unconverged samples tend to be larger in our real-world
experiment with noisy observations than in the simulated ones with perfect observations. Furthermore, rejecting infeasible
poses often leads to the elimination of correct poses and the selection of unconverged wrong poses. Urain et al. [75] and
Ryu et al. [61] circumvented this problem by sorting the generated samples according to the learned energy function, which

evaluates the quality of the generated poses. In contrast to these works, however, our method does not have an explicit scalar
function that can be utilized.

Therefore, we train an auxiliary energy function to sort the generated poses according to their quality. We first modify
the bi-equivariant energy function of Ryu et al. [61] to allow diffusion time conditioning. We then take the Lie derivatives
to obtain the energy-based score model similar to Urain et al. [75]. This energy-based score model is trained using the
loss function in Eq. (21) with proper non-dimensionalization. Although this score-matching model is far less accurate than
our original model in Eq. (23) due to the inflexible nature of energy-based diffusion models, the trained energy function is
sufficient to distinguish between unconverged samples and converged samples.

With the learned energy function, we first sort the generated samples according to their energy value. If the energy function
is well trained, lower-energy samples should be better than higher-energy samples. However, in contrast to the MCMC-based
training of Ryu et al. [61], our diffusion-based energy function training does not have a contrastive mechanism to penalize the
model for assigning low energy to outlier poses. Therefore, our energy function often assigns too low energy values to outlier
poses, although the training is much faster. Nevertheless, we find that simply rejecting too-low-energy outliers effectively
solves this problem. Therefore, we remove the first few samples from the sorted list and start from samples with moderately
low energy. We then try motion planning for each sample until a feasible pose is found. This strategy drastically improves
the success rate of pick-and-place tasks in our real-world tasks.

E.2.3 Experimental Results Details

Note that it is difficult to precisely measure the performance of Diffusion-EDFs for real-world tasks as the success rate is
determined not only by the inference quality but also the quality of observation, localization, and motion planning. For
instance, noisy observation and localization cause success rates to drop for subtasks that require high precision, such as mug
placement and bottle picking, even though Diffusion-EDFs accurately generated correct target poses. Challenges associated
with motion planning can also reduce the success rate, particularly for subtasks that require difficult 6-DoF manipulation,
such as mug placement. We achieve over 90% success rate for all subtasks except the mug placement and bottle picking.
For these two tasks, the success rates are roughly around 80%. The majority of the errors in these tasks were caused by a
slight lack of accuracy in the position that was less than a centimeter. Note that these real hardware success rates may largely
differ across systems, depending on the quality of observation, calibration, motion planning and control pipelines, which
are orthogonal to our research. The video of the real robot manipulation experiments can be found in our project website
(https://sites.google.com/view/diffusion-edfs). In the video, our robot performs 5 to 6 pick-and-place
operations in one take without failure, showcasing that Diffusion-EDFs can solve all three real-world tasks with high success
rates.

For more reproducible results, we also provide example input data and codes4 that we used to generate end-effector
poses for the three real-world tasks with Diffusion-EDFs. These supplementary materials can provide an idea of Diffusion-
EDFs’ pure inference performance for noisy real-world observations without the complications related to motion planning
and localization. The samples generated by Diffusion-EDF for the mug-on-hanger and bowls-on-dishes tasks are illustrated
in Figs. 10 and 11, respectively. The samples generated by Diffusion-EDF for the bottles-on-shelf task are illustrated in
Figs. 12 and 13. Diffusion-EDFs combined with the energy-based critic in Sec. E.2.2 can successfully infer appropriate
poses for all these tasks in more than 90% of the cases, although it is important to note that this success rate is subject to
human evaluation and may vary based on the individual’s criteria.

For mugs and bottles, it takes 5∼6 seconds to generate 20 poses for picking, and 9∼10 seconds to generate 10 poses for
placing. For bowls, it takes 7 seconds to generate 20 poses for picking and 17 seconds to generate 10 poses for placing. The
sampling is slower for the bowls-on-dishes task because the point clouds in this task have more points than in the other tasks.
As mentioned in Sec. D.2, we use two different models for low-resolution and high-resolution denoising. In addition, we use
the energy-based critic to sort the sampled poses according to their quality. Therefore, three different models must be trained
for each pick and place tasks. It takes less than 24 minutes to train each model for mug-picking and less than 36 minutes
for mug-placing with an RTX3090 GPU. The bottles-on-a-shelf task requires slightly longer training time, amounting to 27
minutes for picking and 43 minutes for placing with an RTX3090 GPU. The bowls-on-dishes task requires a much longer
training time because it consists of three different subtasks. It takes less than 47 minutes of training for picking and less than
1.3 hours for the placing. Note that the three models can be trained in parallel. Therefore, it takes less than an hour with three
RTX3090 GPU to train our method for all tasks except for the bowl-placing task.

4Data and codes can be found in https://github.com/tomato1mule/diffusion_edf

https://sites.google.com/view/diffusion-edfs
https://github.com/tomato1mule/diffusion_edf

Figure 10. Samples Generated by Diffusion-EDFs for Real-world Mug-on-a-hanger Task. The figure depicts the end-effector pose
samples for picking and placing a white mug on a white mug hanger. Diffusion-EDFs trained with only ten human demonstrations
generated these samples from the real-world point cloud observations of the scene and grasp. Similar to our simulation experiments, we
experiment for the (a) default scenario, (b) previously unseen target object poses (oblique; note that we only trained Diffusion-EDFs for
upright poses) scenario, (c) previously unseen adversarial distractors (in white color) scenario, (d) previously unseen target object instances
scenario, and (e) the all scenarios combined. The video of the denoising diffusion process can be found in https://sites.google.
com/view/diffusion-edfs

https://sites.google.com/view/diffusion-edfs
https://sites.google.com/view/diffusion-edfs

Figure 11. Samples Generated by Diffusion-EDFs for Real-world Bowls-on-dishes Task. The figure depicts the end-effector pose
samples for picking and placing bowls on the dishes of matching colors in red-green-blue order. Diffusion-EDFs trained with only ten
human demonstrations (three colored subtasks for each) generated these samples from the real-world point cloud observations of the scene
and grasp. The video of the denoising diffusion process can be found in https://sites.google.com/view/diffusion-edfs

https://sites.google.com/view/diffusion-edfs

Figure 12. Samples Generated by Diffusion-EDFs for Real-world Bottles-on-a-shelf Task. The figure depicts the end-effector pose
samples for picking and placing multiples bottles on a shelf. Diffusion-EDFs trained with only four human demonstrations (three sequential
subtasks for each) generated these samples from the real-world point cloud observations of the scene and grasp. Similar to our simulation
experiments, we experiment for the (a) default scenario and (b) previously unseen target object poses (oblique; note that we only trained
Diffusion-EDFs for upright poses) sceneraio. The video of the denoising diffusion process can be found in https://sites.google.
com/view/diffusion-edfs

https://sites.google.com/view/diffusion-edfs
https://sites.google.com/view/diffusion-edfs

Figure 13. Samples Generated by Diffusion-EDFs for Real-world Bottles-on-a-shelf Task (Previously Unseen Instances). The figure
depicts the end-effector pose samples for picking and placing multiples bottles on a shelf. In contrast to Fig. 12, we experiment with
previously unseen bottle instances. Diffusion-EDFs trained with only four human demonstrations (three sequential subtasks for each)
generated these samples from the real-world point cloud observations of the scene and grasp. Similar to Fig. 12, we experiment with both
the (a) trained poses and (b) previously unseen poses (oblique; note that we only trained Diffusion-EDFs for upright poses). The video of
the denoising diffusion process can be found in https://sites.google.com/view/diffusion-edfs

https://sites.google.com/view/diffusion-edfs

