
DIMAT: Decentralized Iterative Merging-And-Training

for Deep Learning Models

Supplementary Material

1. Additional Analysis

In this section, we present additional analysis for complete-
ness, primarily including the proof of all theorems pre-
sented in Section 4. Please note that the proof techniques
for the proposed algorithms are different, while they share
some similarities. For the analysis, we set the merging fre-
quency n as 1 for a generic purpose.

1.1. Algorithmic Frameworks

DIMAT-ADAM is slightly different from its centralized
counterpart due to an auxiliary variable û

i
k. Based on a

recent work [9], the direct extension of Adam presented
in [36] may not necessarily converge to a stationary point.
rk in Line 4 of Algorithm 3 can take different forms, lead-
ing to different variants such as AMSGrad. In this work, we
will primarily investigate the convergence rate of DIMAT-
AMSGRAD. ↵ represents the division between two vec-
tors.

Algorithm 2: DIMAT-MSGD
Input : mixing matrix ⇧, the # of epochs K,

initialization x
i
1, vi

1, step size ↵,
0 � < 1, merging frequency n

Output: x̄K = 1
N

PN
i=1 x

i
K

1 for k in 1 : K do

2 for each agent i 2 V do

3 Calculate the stochastic gradient gi
k;

4 if k mod n=0 then

5 x
i
k+1/2 =

P
j2Nb(i) ⇡ijP

ij
k x

j
k;

6 else

7 x
i
k+1/2 = x

i
k;

8 v
i
k+1 = �vi

k � ↵gi
k;

9 x
i
k+1 = x

i
k+1/2 + v

i
k+1;

1.2. Additional Theoretical Results

Theorem 3. Let Assumptions 1 and 3 hold. If the step size
↵ min{ (1�

p
⇢0)(1��)
4L , (1�

p
⇢0)2(1��)2

6L } in Algorithm 2,

Algorithm 3: DIMAT-ADAM

Input : mixing matrix ⇧, the # of epochs K,
initialization x1, mi

0 = v
i
0 = 0, ûi

1 = v
i
1,

step size ↵, merging frequency n, small
positive constant ✏, �1 2 [0, 1)

Output: x̄K = 1
N

PN
i=1 x

i
K

1 for k in 1 : K do

2 for each agent i 2 V do

3 Calculate the stochastic gradient gi
k;

4 m
i
k = �1m

i
k�1 + (1� �1)gi

k;
5 v

i
k = rk(gi

1, ...,g
i
k);

6 if k mod n=0 then

7 x
i
k+1/2 =

P
j2Nb(i) ⇡ijP

ij
k x

j
k;

8 û
i
k+1/2 =

P
j2Nb(i) ⇡ijP

ij
k û

j
k;

9 else

10 x
i
k+1/2 = x

i
k;

11 û
i
k+1/2 = û

i
k;

12 u
i
k = max(ûi

k, ✏);
13 x

i
k+1 = x

i
k+1/2 � ↵mi

k ↵ (ui
k)

1/2;
14 û

i
k+1 = û

i
k+1/2 � v

i
k�1 + v

i
k;

then for all K � 1, the following relationship holds true:

1

K

KX

k=1

E[krf(x̄k)k
2]

2(1� �)(f(x̄0)� f⇤)

↵K
+

L↵�2

(1� �)2N

+
4↵2�2L2

(1� �)2(1� ⇢0)
+

16↵22L2

(1� �)2(1�
p
⇢0)2

,

(10)

where x̄k = 1
N

PN
i=1 x

i
k.

Corollary 2. Let Assumptions 1 and 3 hold. If step
size ↵ = O(

q
N
K) in Algorithm 2, then for all K �

max{ 32NL2

(1��)2(1�
p
⇢0)2

, 36NL2

(1��)4(1�
p
⇢0)4

}, we have

1

K

KX

k=1

E[krf(x̄k)k
2] O(

r
1

NK
+

N

(1� ⇢0)K

+
N

(1�
p
⇢0)2K

).

(11)

Before presenting the main result for DMM-ADAM, we
define specifically rk in Algorithm 3 as v̂i

k = �2v̂
i
k�1+(1�

�2)gi
k � g

i
k and v

i
k = max{v̂i

k,v
i
k�1}, where 0 �2 < 1

and v̂
i
0 = 0, leading to DIMAT-AMSGRAD. To show the

convergence rate, we need another assumption specifically
for the adaptive gradient descent type of algorithms, which
bounds the infinity norms of gi

k and rfi(xi
k) by a positive

constant G1 < 1. This assumption has actually been re-
laxed in many first-order methods such as SGD and MSGD
types [58]. However, the relaxation of the assumption in
adaptive gradient methods is out of our scope and we will
still proceed with this assumption.

Theorem 4. Let Assumptions 1 and 3 hold. Also suppose
that kgi

kk1 G1 and that krf i(xi
k)k1 G1 for all

i 2 V and k � 1. If step size ↵ = O(1p
Kd

) in Algorithm 3,

then for all K �
256L2

d✏ , we have,

1

K

KX

k=1

E[krf(x̄k)k
2] O(

d1.5
p
NK

+
dN

(1�
p
⇢0)2K

+
N1.5d0.5

K1.5
+

p
Nd2

(1�
p
⇢0)K

+
Nd1.5

(1�
p
⇢0)K1.5

)

(12)

where x̄k = 1
N

PN
i=1 x

i
k.

Theorem 4 shows that Algorithm 3 converges with a rate
of O(d1.5

p
NK

) when K is sufficiently large. Also, DIMAT-
AMSGRAD enjoys the linear speed up as DIMAT-SGD
and DIMAT-MSGD. The dependence on the dimension
of x is attributed to the bounded assumption of the infin-
ity norms of gradients. The interaction between topology
and model merging from Remark 2 can comparably apply
to DIMAT-AMSGRAD in this context. The transition be-
tween the transient and stable regimes depending on when
O(d1.5

p
NK

) dominates also motivates the further future inves-
tigation of convergence dynamics.

1.3. Additional Analysis for DIMAT-SGD

With abuse of notation, we use some upper bold characters
to represent vectors after they are expanded. Define

Xk = [x1
k;x

2
k; ...;x

N
k]> 2 RdN ,

Gk = [g1
k;g

2
k; ...;g

N
k]> 2 RdN ,

Hk = [rf1(x1
k);rf2(x2

k); ...;rfN (xN
k))]> 2 RdN ,

Q =
1

dN
11

>
dN 2 RdN⇥dN

Without loss of generality, suppose that the initialization
X0 = 0 throughout the rest of analysis. For DIMAT-SGD,
we have

Xk = �↵
k�1X

⌧=1

k�1Y

t=⌧+1

WPtG⌧ (13)

For ease of exposition, we define
Qk

⌧=k+1 WP⌧ = I in our
analysis. Left multiplying by I�Q yields the following
relationship

(I�Q)Xk = �↵
k�1X

⌧=1

(I�Q)
k�1Y

t=⌧+1

WPtG⌧ , (14)

which will serve to characterize the optimal error bound.
By taking the squared norm and expectation on both sides,
we have

E[k(I�Q)Xkk
2] = ↵2E[k

k�1X

⌧=1

(I�Q)
k�1Y

t=⌧+1

WPtG⌧k
2].

(15)
The left side of above equation is equivalent to
E[1N

PN
i=1 kx

i
k � x̄kk

2]. To further analyze the Eq. 15, we
investigate its right side in the following.

↵2E[k
k�1X

⌧=1

(I�Q)
k�1Y

t=⌧+1

WPtG⌧k
2]

2↵2 E[k
k�1X

⌧=1

(I�Q)
k�1Y

t=⌧+1

WPt(G⌧ �H⌧)k
2]

| {z }
T1

+ 2↵2 E[k
k�1X

⌧=1

(I�Q)
k�1Y

t=⌧+1

WPtH⌧k
2]

| {z }
T2

,

(16)

which follows by using the basic inequality ka + bk
2

2kak2 + 2kbk2. We will next study the upper bounds for
T1 and T2, respectively. Before that, we present some tech-
nical detail for how to derive ⇢0 ⇢ and then state two key
lemmas to manipulate (I�Q)

Qk
⌧=1 WP⌧ and Gk �Hk.

Analysis of ⇢0 ⇢. As WPk is symmetric, the immedi-
ate outcome is that the singular values of WPk are equal to
the absolute values of eigenvalues of WPk, which results in
⇣l(WPk) = |�l(WPk)|, where ⇣l is the l-th singular value
of WPk. This result is well-known and we skip the proof in
this context. According to the Courant–Fischer–Weyl Min-
Max Principle [23], the following relationship can be ob-
tained:

⇣l(WPk) = maxS:dim(S)=lminx2S,kxk=1kWPkxk

 maxS:dim(S)=lminx2S,kxk=1kWkkPkxk

= ⇣1(W) · maxS:dim(S)=lminx2S,kxk=1kPkxk

 ⇣1(W)⇣i(Pk),

(17)

where S : dim(S) = l is a subspace of RdN of dimension
l. Then,

⇣l(WPk) = ⇣l([WPk]
>)

= ⇣l(P
>
k W

>) ⇣1(P
>
k)⇣l(W

>) = ⇣l(W)⇣1(Pk).
(18)

We have known that W, Pk and WPk are symmetric such
that

|�l(WPk)| |�l(W)||�1(Pk)| (19)

Since all eigenvalues of Pk are contained in the roots
of unity, the modulus of any eigenvalue of Pk is 1, i.e.,
|�1(Pk)| = 1. With this in hand, we have

|�l(WPk)| |�l(W)| (20)

The above inequality implies that

max{|�2(WPk)|, |�dN (WPk)|}

max{|�2(W)|, |�dN (W)|},
(21)

which ensures the fact that
p
⇢0

p
⇢.

Lemma 1. Let Assumption 1 hold. Suppose that E[gi] =
rf i(xi), 8i 2 V . Then, we have the following relationship

E[k 1

N

NX

i=1

g
i
k
2]

1

N
�2 + E[k 1

N

NX

i=1

rf i(xi)k2]. (22)

The proof for the Lemma 1 follows similarly Lemma 1
in [58] and we skip it in this context.

Lemma 2. Let Assumption 3 hold. Then, for any integer
k � 1, we have k(I�Q)

Qk
⌧=1 WP⌧k (

p
⇢0)k < 1,

where k · k denotes the spectral norm in this context.

Proof. The proof can be easily obtained by using Assump-
tion 3 and the similar analysis techniques in Lemma IV.2
in [7].

We are now able to bound T1 and T2. By following the
similar proof techniques and adapting the analysis in [58],
the following bounds are obtained accordingly.

T1
N�2

1� ⇢0
(23)

T2
1

1�
p
⇢0
[(8L2

kX

⌧=1

(⇢0)(k�⌧)/2E[k(I�Q)X⌧k
2]

+ 4N
kX

⌧=1

(⇢0)(k�⌧)/2E[k 1

N

NX

i=1

rf i(xi
⌧)k

2]]

+
4N2

1�
p
⇢0

(24)

Based on the upper bounds for T1 and T2, we can obtain the
upper bound for 1

N

PN
i=1 E[kxi

k � x̄kk
2].

Lemma 3. Let Assumptions 1 and 3 hold. For x
i
k defined

by Algorithm 1, if step size ↵
1�

p
⇢0

4
p
2L

, then 8K � 1, the
following relationship holds true

KX

k=1

1

N

NX

i=1

E[kxi
k � x̄kk

2]
4K↵2�2

1� ⇢0

+
16↵2

(1�
p
⇢0)2

KX

k=1

E[k 1

N

NX

i=1

rf i(xi
k)k

2]

+
16K↵22

(1�
p
⇢0)2

,

(25)

where x̄k = 1
N

PN
i=1 x

i
k.

Combining Eqs 16, 23, and 24 and summing k over
{1, 2, ...,K}, and following the proof techniques from [58]
can complete the proof for Lemma 3. With Lemma 3 in
hand, we are ready to give the proof of Theorem 2 in the
following.

Proof. We start with the descent inequality given by the
smoothness of f such that

E[f(x̄k+1)] E[f(x̄k)] + E[hrf(x̄k), x̄k+1 � x̄ki]

+
L

2
E[kx̄k+1 � x̄kk

2]

(26)

We first process the second term on the right side of above
inequality. Replacing x̄k+1 � x̄k with �↵ 1

N

PN
i=1 g

i(xi
k)

allows us to study �↵E[hrf(x̄k),
1
N

PN
i=1 g

i(xi
k)i]. Thus,

we have

hrf(x̄k),
1

N

NX

i=1

g
i(xi

k)i =
1

2
(krf(x̄k)k

2+

k
1

N

NX

i=1

rf i(xi
k)k

2
� krf(x̄k)�

1

N

NX

i=1

rf i(xi
k)k

2)

�
1

2
(krf(x̄k)k

2 + k
1

N

NX

i=1

rf i(xi
k)k

2

� L2 1

N

NX

i=1

kx̄k � x
i
kk

2).

(27)

The last inequality follows from the smoothness assump-
tion. Therefore, we have

E[hrf(x̄k), x̄k+1 � x̄ki] �
↵

2
E[krf(x̄k)k

2

+ k
1

N

NX

i=1

rf i(xi
k)k

2] +
↵L2

2

1

N

NX

i=1

E[kx̄k � x
i
kk

2].

(28)

With Eq. 26, the following relationship can be obtained.

E[f(x̄k+1)] E[f(x̄k)]�
↵

2
E[krf(x̄k)k

2

+ k
1

N

NX

i=1

rf i(xi
k)k

2] +
↵L2

2

1

N

NX

i=1

E[kx̄k � x
i
kk

2]

+
L

2
E[k 1

N

NX

i=1

g
i
kk

2].

(29)

The last inequality holds due to x̄k+1 � x̄k = 1
N

PN
i=1 g

i
k.

With Lemma 1 and some mathematical manipulations, we
have

E[f(x̄k+1)] E[f(x̄k)]�
↵

2
E[krf(x̄k)k

2

+ k
1

N

NX

i=1

rf i(xi
k)k

2] +
↵L2

2

1

N

NX

i=1

E[kx̄k � x
i
kk

2]

+
L↵2

2
(
�2

N
+ E[1

N

NX

i=1

krf i(xi
k)k

2])

= E[f(x̄k)]�
↵

2
E[krf(x̄k)k

2]�

(
↵

2
�

L↵2

2
)E[k 1

N

NX

i=1

rf i(xi
k)k

2]

+
↵L2

2N

NX

i=1

E[kx̄k � x
i
kk

2] +
L↵2�2

2N
,

(30)

which implies the following inequality

E[krf(x̄k)k
2]

2

↵
(E[f(x̄k)]� E[f(x̄k+1)])

� (1� L↵)E[k 1

N

NX

i=1

rf i(xi
k)k

2] +
L2

N
E[kx̄k � x

i
kk

2]

+
L↵�2

N
.

(31)

The above relationship is obtained by dividing ↵/2 on both

sides. Summing k over {1, 2, ...,K} yields

KX

k=1

E[krf(x̄k)k
2]

2

↵
(f(x̄0)� E[f(x̄K)])

� (1� L↵)
KX

k=1

E[k 1

N

NX

i=1

rf i(xi
k)k

2]

+ L2(
4K↵2�2

1� ⇢0
+

16↵2

(1�
p
⇢0)2

KX

k=1

E[k 1

N

NX

i=1

rf i(xi
k)k

2]

+
16K↵22

(1�
p
⇢0)2

) +
L↵�2K

N

2

↵
(f(x̄0)� f⇤)�

(1� L↵�
16L2↵2

(1�
p
⇢0)2

)
KX

k=1

E[k 1

N

NX

i=1

rf i(xi
k)k

2]

+
4KL2↵2�2

1� ⇢0
+

16KL2↵22

(1�
p
⇢0)2

+
LK↵�2

N
(32)

The last inequality is attained by substituting the conclusion
from Lemma 3 into Eq. 31. Due to the condition for the step
size ↵, we know that 1�L↵�

16L2↵2

(1�
p
⇢0)2

� 0, which would
simplify the right side in the last inequality. Hence,

KX

k=1

E[krf(x̄k)k
2]

2

↵
(f(x̄0)� f⇤) +

4KL2↵2�2

1� ⇢0

+
16KL2↵22

(1�
p
⇢0)2

+
LK↵�2

N
(33)

The desirable result is obtained by dividing K on both sides.

The proof for Corollary 1 is easily completed by substi-
tuting the step size ↵ = O(

q
N
K) into the error bound in

Theorem 2.

1.4. Additional Analysis for DIMAT-MSGD

To prove Theorem 3, we need another auxiliary variable to
assist in establishing the relationship between two consecu-
tive steps of x̄. By multiplying 1

N 11
> on

v
i
k+1 = �vi

k � ↵gi
k,x

i
k+1 = x

i
k+1/2 + v

i
k+1,

we obtain

v̄k+1 = �v̄k � ↵
1

N

NX

i=1

g
i
k

x̄k+1 = x̄k + v̄k+1,

(34)

which follows by the approximate equivalence between av-
eraged permuted parameters and averaged parameters in
Remark 1. To characterize the analysis, we define an auxil-
iary variable in the following

p̄k :=
1

1� �
x̄k �

�

1� �
x̄k�1, (35)

where k � 1. If k = 0, then p̄0 = x̄0 = 0. The following
lemma states the relationship between p̄k+1 and p̄k.

Lemma 4. Let p̄k be defined in Eq. 35. Based on Algo-
rithm 2, we have

p̄k+1 � p̄k = �
↵

(1� �)N

NX

i=1

g
i
k. (36)

The proof of Lemma 4 follows similarly from Lemma 3
in [17]. We next study the relationship between p̄k and x̄k.

Lemma 5. Based on Algorithm 2 and p̄k in Eq. 35, the
following relationship holds true for all K � 1

KX

k=1

kp̄k � z̄kk
↵2�2

(1� �)4

KX

k=1

k
1

N

NX

i=1

g
i
kk

2. (37)

The proof of Lemma 5 can be adapted from that of
Lemma 4 in [17]. Next, we define

Vk = [v1
k;v

2
k; ...;v

N
k]> 2 RdN .

To prove Theorem 3, we need to get the upper bound for
E[k(I�Q)Xkk

2] first, as done for DIMAT-SGD. Hence,
we proceed with expanding k(I�Q)Xkk

2. Recursively
applying v

i
k+1 = �vi

k � ↵gi
k and set V0 = 0 yields

Vk = �↵
k�1X

⌧=0

�k�1�⌧
G⌧ (38)

With Xk = WPk�1Xk�1 + Vk, recursively applying it
and using 0 initial condition attains

Xk =
kX

⌧=1

kY

t=⌧+1

WPtV⌧ . (39)

Substituting Eq. 38 into Eq. 39 produces the following rela-
tionship:

Xk = �↵
kX

⌧=1

kY

t=⌧+1

WPt

⌧�1X

o=0

�⌧�1�o
Go

= �↵
kX

⌧=1

⌧�1X

o=0

�⌧�1�o
kY

t=⌧+1

WPtGo

= �↵
k�1X

c=0

[
kX

l=c+1

�l�1�c]
k�1Y

t=c+1

WPtGc

= �↵
k�1X

⌧=0

1� �k�⌧

1� �

k�1Y

t=⌧+1

WPtG⌧ .

(40)

Multiplying I�Q on both sides yields

(I�Q)Xk = �↵
k�1X

⌧=0

1� �k�⌧

1� �
(I�Q)

k�1Y

t=⌧+1

WPtG⌧

(41)
It is observed that the above equality has the similar form of
Eq. 14 and we process it as done in Eq. 16. With Lemma 2
in hand, we present a key lemma for assisting in the proof
of Theorem 3.

Lemma 6. Let Assumptions 1 and 3 hold. For {x̄k} defined
in Algorithm 2, if ↵

(1��)(1�p
⇢)

4
p
2L

, then for all K � 1, we
have

KX

k=1

1

N

NX

i=1

E[kx̄k � x
i
kk

2]
4↵2�2K

(1� �)2(1� ⇢0)

+
16↵2

(1�
p
⇢0)2(1� �)2

KX

k=1

E[k 1

N

NX

i=1

rf i(xi
k)k

2]

+
16K↵22

(1�
p
⇢0)2(1� �)2

,

(42)

where x̄k = 1
N

PN
i=1 x

i
k.

The proof of Lemma 6 follows from the proof of Lemma
1 in [17] and Lemma 11 in [58]. With this in hand, we
are now ready to prove Theorem 3. The proof techniques
are quite similar as used in showing Theorem 2. Specif-
ically, we apply the smoothness condition and conclusion
from Lemma 6 to arrive at the conclusion. The proof also
follows similarly from Theorem 1 in [17] and Theorem 3
in [58]. The proof for Corollary 2 is immediately shown
by substituting the step size into the conclusion from Theo-
rem 3.

1.5. Additional Analysis for DIMAT-AMSGRAD

The proof for Theorem 4 is fairly non-trivial and techni-
cal. In the proof, we need to use an auxiliary sequence as
p̄k defined before. Therefore, we utilize the same auxil-
iary variable in the proof. Similarly, we next establish the
relationship between p̄k and p̄k+1. Please note that in the
analysis, we may use different notations specified for the
convenience of analysis.

Lemma 7. For the sequence defined in Eq. 35, through Al-
gorithm 3, we have the following relationship

p̄k+1 � p̄k = ↵
�1

1� �1

1

N
m

i
k ↵ ((ui

k�1)
1/2

� (ui
k)

1/2)

� ↵
1

N

NX

i=1

g
i
k ↵ (ui

k)
1/2

(43)

The proof follows similarly from Lemma A.1 in [9], Due
to the max(·; ·) function in the update law, handling such a
function can impose difficulties in the proof. Therefore, we
present a lemma to pave the way.

Lemma 8. Define a set of numbers, c1, c2, ..., cn 2 R and
denote their mean by c̄ = 1

n

Pn
i=1 ci. Define hi(r) :=

max{ci, r} and h̄(r) = 1
n

Pn
i=1 hi(r). For any r and r0

with r0 � r, we have
nX

i=1

|hi(r)� h̄i(r)|
nX

i=1

|hi(r
0)� h̄i(r

0)|, (44)

and when r mini2[n]ci, we have

nX

i=1

|hi(r)� h̄i(r)| =
nX

i=1

|ci � c̄|. (45)

With the above two lemmas, we are now ready to show
the detailed proof for Theorem 4. Please note that the proof
techniques follow from the majority of proof of Theorems 2
and 3 in [9]. However, the significant difference is to incor-
porate the permutation matrix P into the update law such
that it leads to the impact of the spectral gap on the error
bounds. We will next arrive at this with the derivation. We
first define two auxiliary variables:

Mk = [m1
k;m

2
k; ...;m

N
k]> 2 RdN ,

and
Uk = [u1

k;u
2
k; ...;u

N
k]> 2 RdN

Based on Algorithm 3, we have

Xk = WPk�1Xk�1 � ↵Mk�1 ↵U
1/2
k�1. (46)

Recursively applying the above equation yields

Xk =
k�1Y

⌧=1

WP⌧X1�↵
k�1X

⌧=1

k�1Y

t=⌧+1

WPtM⌧ ↵U
1/2
⌧ (47)

Setting 0 initial condition and multiplying by I�Q on both
sides attains the following relationship:

(I�Q)Xk = �↵
k�1X

⌧=1

(I�Q)
k�1Y

t=⌧+1

WPtM⌧ ↵U
1/2
⌧

(48)
We then calculate its squared norm and take the expectation
to get the similar equation as Eq. 15.

E[k(I�Q)Xkk
2] = ↵2E[k

Pk�1
⌧=1(I�Q)

Qk�1
t=⌧+1 WPtM⌧ ↵U

1/2
⌧ k

2].

For DIMAT-SGD and DIMAT-MSGD, to acquire the up-
per bound of E[k(I�Q)Xkk

2], we used the trick G⌧ �

H⌧ + H⌧ as there is no assumption for bounded (stochas-
tic) gradients. However, For Adam type of algorithms, to
the best of our knowledge, this assumption is still required
to achieve the convergence. Regarding its relaxation we will
leave in our future work. Hence, based on Lemma 2, we
have the following relationship

E[k(I�Q)Xkk
2] ↵2E[k

k�1X

⌧=1

(⇢0)k�1�⌧
M⌧ ↵U

1/2
⌧ k

2]

(49)
Thus, based on the conditions in Theorem 4, we can easily
get the inequality as follows

E[k(I�Q)Xkk
2]

↵2NdG2
1

(1� ⇢0)2✏
, (50)

which holds due to kg
i
kk G1, [Ui

k]j � ✏. Similarly,
the upper bound of E[kp̄k � x̄kk

2] is as follows

E[kp̄k � x̄kk
2] = E[k �1

1� �1
(x̄k � x̄k�1)k

2]

= (
�1

1� �1
)2↵2E[k 1

N

NX

i=1

m
i
k�1 ↵ (ui

k)
1/2

k
2]

 (
�1

1� �1
)2
↵2dG2

1
N✏

(51)

Therefore, we can observe how the permutation matrix can
be squeezed in the analysis such that the error bound is im-
pacted with respect to the spectral gap 1�⇢0. It also implies
that existing analysis can be adapted to give the improved
error bound shown in Theorem 4. Thus, we are not going
to repeat all proof steps that are similar to existing analysis
in [9], while, instead, giving the proof sketch, which assists
in arriving at Theorem 4.

Proof. We now present the proof sketch for Theorem 4 and
will refer interested readers to related works for more detail.
• Step 1: Bounding gradient. With the assistance of auxil-

iary sequence {p̄k}, we don’t have to consider the com-
plicated update dependence on mk and thus perform con-
vergence analysis for the upper bound on rf(p̄k). With
this in hand, based on the smoothness of f , we subse-
quently construct the bound for 1

K

PK
k=1 E[k

rf(x̄k)
(ūk)1/4

k
2],

where ūk = 1
N

PN
i=1 u

i
k.

1

K

KX

k=1

E[krf(x̄k)

(ūk)1/4
k
2]

2E[f(p̄1)� f(p̄K+1)]

K↵

+
2�1D1

K(1� �1)
+

2D2

K
+

3D3

K
+

LE[kp̄k+1 � p̄kk
2]

K↵
,

(52)

where

D1 =
KX

k=1

E[hrf(p̄k),
1

N

NX

i=1

m
i
k�1 ↵ ((ui

k�1)
1/2

� (ui
k)

1/2)i],

D2 =
KX

k=1

E[hrf(p̄k),
1

N

NX

i=1

rf i(xi
k)↵ ((ūk)

1/2

� (ui
k)

1/2)i],

D3 =
KX

k=1

E[k
1
N

PN
i=1 rf i(xi

k)�rf(x̄k)

(ūk)1/4
k
2

+ k
rf(p̄k)�rf(x̄k)

(ūk)1/4
k
2].

The smoothness condition and Eqs. 50 and 51 grant us the
upper bound of D3. Establishing the upper bounds for D1

and D2 give rise to the terms related to E[
PK

k=1 kVk�1�

Vk�2kabs], where kCkabs =
P

i,j |Ci,j | denotes the
entry-wise L1 norm of a matrix. Vk is established as
a non-decreasing function such that E[

PK
k=1 kVk�1 �

Vk�2kabs] = E[
PN

i=1

Pd
j=1([v

i
K�1]j � [vi

0]j)]. Due to
kg

i
kk1 G1, it is proved that [vi

k]j G2
1. With this,

we can conclude that E[
PK

k=1 kVk�1 � Vk�2kabs]

NdG2
1.

• Step 2: Bounding the drift term variance. One important
term in the proof is the stochastic gradient variance mul-
tiplied by the adaptive learning rate, E[k 1

N

PN
i=1 g

i
k ↵

u
i
kk

2] E[k 1
N

PN
i=1 rf i(xi

k) ↵ (ui
k)

1/2
k
2] + d�2

N✏ . To
process the first term on the right side of the above in-
equality, we can use ūk and ka+ bk

2
 2kak2 + 2kbk2

to transform from E[k 1
N

PN
i=1 rf i(xi

k) ↵ (ui
k)

1/2
k
2] to

E[k 1
N

PN
i=1 rf i(xi

k) ↵ (ūk)1/2k2]. We then can bound
them as performed for D2 and D3. Hence, we will reach
to the bound in the following for 1

K

PK
k=1 E[k

rf(x̄k)
(ūk)1/4

k
2]:

1

K

KX

k=1

E[krf(x̄k)

(ūk)1/4
k
2] C1(

E[f(p̄1)� f⇤]

K↵
+

↵d�2

N
)

+ C2↵
2d+ C3↵

3d+
C4 + C5↵

K
p
N

NdG2
1,

(53)

where C1 = max{4, 4L/✏}, C2 = 6(�2
1

(1��1)2
+

1
(1�⇢0)2)

LG2
1

✏1.5 , C3 = 16L2G2
1

✏2 , C4 =
2(�+

�1
1��1

)G2
1

✏1.5(1��) ,

C5 =
2LG2

1(�+
�1

1��1
+2)

✏2(1��) .
• Setting explicit step size. Setting the step size as ↵ =

O(
q

1
dK), substituting it into Eq. 53, and using the fact

that kūkk1 G2
1 yields the desired result.

With the above three steps, the desired conclusion is ob-
tained.

2. Additional Experimental Results

Within this section, we present supplementary experimental
results encompassing additional datasets, specifically Tiny
ImageNet and CIFAR10, along with an alternative architec-
ture, ResNet50.

Moreover, our investigation delves into scalability, con-
sidering 10 and 20 models across various baseline algo-
rithms. Additionally, we scrutinize the impact of different
epoch configurations for DIMAT, providing insights into its
performance over successive iterations.

Furthermore, we sought to explore the key factors con-
tributing to the challenge of scalability in non-iid scenarios.
By employing random initialization techniques and incor-
porating larger datasets, we aimed to assess the efficacy of
our model under diverse conditions.

2.1. Additional Dataset Comparisons

In this subsection, we present an analysis of the Tiny Ima-
geNet and CIFAR10 datasets. Table 4 provides a compre-
hensive overview of algorithmic performance across these
additional datasets. The evaluation considers two key sce-
narios for each dataset: Fully Connected (FC) and Ring
topologies in non-IID data. The reported values represent
the mean and standard deviation of the performance metric
obtained through multiple trial runs.

Table 4. Comparing algorithmic accuracy (mean±std) in fully
connected and ring topologies with ResNet-20 architecture on
Tiny ImageNet and CIFAR-10 non-IID data for 5 agents.

Algorithm
Tiny ImageNet CIFAR10

FC Ring FC Ring
SGP 9.49±0.43 7.42±0.24 19.18±0.11 19.04±0.27
CDSGD 9.05±0.15 7.36±0.25 18.85±0.08 19.20±0.16
WA 48.59±0.71 10.48±0.25 49.25±3.95 23.14±1.46

DIMAT (ours) 49.09±0.23 17.70±0.14 27.12±3.39 20.22±0.20

Notably, in the case of Tiny ImageNet, our proposed al-
gorithm, DIMAT, emerges as a standout performer, outper-
forming all baseline algorithms across both non-IID and IID
scenarios, as it can be seen in Table 4 and fig.7. However,
for CIFAR10, the limited pretraining on only two classes
results in a bias among agents, impacting their learning ef-
fectiveness. This bias is evident in their suboptimal perfor-
mance. Nevertheless, in an IID setting, as depicted in fig.
6, DIMAT demonstrates superior performance on both fully
connected and ring topologies.

2.2. Additional Architecture Comparisons

The results for ResNet50 are presented in Table 5. Notably,
the performances of WA and DIMAT are comparable. It

(a) Fully Connected (b) Ring

Figure 6. Comparing algorithmic accuracy (mean±std) in fully connected (a) and ring (b) topologies with ResNet-20 architecture on
CIFAR-10 IID data for 5 agents.

(a) Fully Connected (b) Ring

Figure 7. Comparing algorithmic accuracy (mean±std) in fully connected (a) and ring (b) topologies with ResNet-20 architecture on Tiny
ImageNet IID data for 5 agents.

(a) 10 Agents (b) 20 Agents

Figure 8. Comparing algorithmic accuracy (mean±std) for ten (a) and twenty (b) agents with VGG16 architecture on CIFAR-100 IID data.

is evident that DIMAT’s performance is highly dependent on the chosen architecture. Additionally, in the IID ring

scenario, DIMAT emerges as the top performer, surpassing
all other algorithms in terms of accuracy.

Table 5. Comparison of Test Accuracy (mean±std) on CIFAR-100
with ResNet-50 architecture for 5 agents under both IID and non-
IID data distribution, considering fully connected (FC) and ring
topologies.

Algorithm
IID non-IID

FC Ring FC Ring
SGP 39.99±0.45 39.74±0.04 13.27±0.09 13.33±0.12
CDSGD 37.99±0.16 37.94±0.38 12.90±0.10 9.10±5.73
WA 49.07±0.16 32.47±0.24 46.76±0.57 24.21±0.39

DIMAT (ours) 42.59±1.00 42.06±0.13 45.10±0.49 19.54±0.05

2.3. Additional Scalability Analysis

2.3.1 IID Data Scalability

Figures 8a and 8b depict algorithmic accuracy trends with
varying agent numbers using CIFAR-100 IID data and the
VGG16 architecture. Figure 8a illustrates accuracy trends
for 10 agents, providing a snapshot of algorithmic behavior
in a moderately scaled scenario. In fig. 8b, the analysis ex-
tends to 20 agents, offering valuable insights into the algo-
rithm’s robustness and scalability as agent numbers increase
in the IID scenario. It’s noteworthy that, even with this esca-
lation in the number of agents, DIMAT consistently outper-
forms all baseline algorithms, showcasing its resilience and
superior performance in the face of increased scalability.

2.3.2 Non-IID Data Scalability

In investigating scalability under non-IID scenarios, we hy-
pothesized that the bias introduced by pretraining models
might be a contributing factor. Given that the number of
classes in non-IID settings decreases, pretraining could po-
tentially lead to biased initializations. To test this hypoth-
esis, we experimented with random initialization instead of
starting with pretrained models. However, our results indi-
cate that this change in initialization strategy does not sig-
nificantly affect the performance of DIMAT. The observed
trends remain consistent with those obtained when using
pretrained models, suggesting that factors beyond initializa-
tion bias do not influence DIMAT’s performance in non-IID
scenarios. This can be seen in fig. 9. Another approach we
explored to address this issue was utilizing larger datasets,
such as Tiny ImageNet, for more agents in non-IID scenar-
ios. As depicted in fig. 10, even with 10 agents, the ac-
curacy continues to increase over time. This suggests that
the underlying scalability issue in non-IID scenarios might
be influenced by the dataset size. A larger dataset appears
to improve performance, particularly for a higher number
of agents. However, there seems to be a breakpoint. Un-
like CIFAR-100, Tiny ImageNet is capable of handling a
larger number of agents but still exhibits a breakpoint as we

Figure 9. Impact of model’s initialization on accuracy
(Mean±Std) using ResNet-20 architecture and a fully connected
topology on CIFAR-100 non-IID data. Results show the perfor-
mance of the DIMAT algorithm with 5 to 10 agents.

increase the number of agents, indicating that learning be-
comes progressively more challenging.

Figure 10. Effect of dataset size on accuracy (Mean±Std) using
ResNet-20 architecture with a fully connected topology on Tiny
ImageNet non-IID data. The figure illustrates the performance of
the DIMAT algorithm with 5 to 15 agents.

2.4. Exploring Varied Training Epochs

In this subsection, we present results from experiments con-
ducted with different numbers of training epochs for each
iteration. Our analysis reveals that the optimal number of
training epochs between iterations is 2, outperforming con-
figurations with 1, 5, 7, and 10 training epochs. These find-
ings are illustrated in Fig. 11.

2.5. Visualization of Communication Overhead

Figure 12 illustrates a comparison of communication over-
head among DIMAT, SGP, CGA, and CDSGD for 5, 10,
and 20 agents across fully connected and ring topologies.

Figure 11. Impact of diverse training epochs on agents accuracy
(Mean±Std) with fully Connected Topology using ResNet-20 ar-
chitecture on CIFAR-100 non-IID data for 5 agents on the DIMAT
algorithm. .

Figure 12. Number of communication rounds per epoch for fully
connected and ring topologies.

DIMAT significantly requires fewer communication
rounds compared to SGP, CGA, and CDSGD.

2.6. Computational Overhead

In this subsection, we examine the computational over-
head of various algorithms when training 5 agents using
ResNet20 architecture on the non-IID CIFAR-100 dataset
for 100 iterations. We focus on GPU memory usage and
computation time as key performance metrics. Table 6 com-
pares GPU memory usage and computation time for SGP,
CDSGD, and our proposed method, DIMAT.

Experiments were conducted on an NVIDIA A100 GPU
(80 GB). It is important to note that the reported GPU mem-
ory usage is approximate. DIMAT demonstrates signifi-
cantly lower GPU memory usage, requiring only 6 GB com-
pared to 15 GB for both SGP and CDSGD. Furthermore,
DIMAT achieves faster computation, completing the task in

15.95 hours compared to 16.88 hours for SGP and 16.99
hours for CDSGD.

These findings underscore the efficiency of DIMAT in
terms of memory usage and computation time, rendering it
a promising approach for decentralized learning tasks.

Table 6. Comparison of GPU memory usage and computation time
for 5 agents using ResNet20 on non-IID CIFAR-100 data for 100
iterations. The experiments were conducted on an NVIDIA A100
GPU.

Algorithm GPU Time
SGP 15 GB 16.88 hrs.
CDSGD 15 GB 16.99 hrs.
DIMAT (ours) 6 GB 15.95 hrs.

3. Expanded Explanations of Selected Termi-

nologies

3.1. Mixing Matrix

The mixing matrix, a doubly stochastic matrix, signifies
inter-agent influences in collaborative learning systems.
While various design choices exist, we adopt a vanilla ver-
sion for illustration. In a fully connected topology, the
matrix is uniform: for instance, in a 5-agent network, all
elements are set to 0.2 for symmetrical collaboration. In
a ring topology, where agents equally influence their two
adjacent counterparts, the matrix takes a circular pattern.
Specifically, elements corresponding to the three neighbor-
ing agents are 0.333, while the rest are 0. This matrix rep-
resentation is as follows:

For fully connected topology:
2

66664

0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2

3

77775

For ring topology:
2

66664

0.333 0.333 0 0 0.333
0.333 0.333 0.333 0 0
0 0.333 0.333 0.333 0
0 0 0.333 0.333 0.333

0.333 0 0 0.333 0.333

3

77775

3.2. Activation Matching

We adopt the method proposed by Ainsworth et al. [1].
This method aims to associate units across two models by
performing regression between their activations, under the
premise that models must learn similar features to effec-
tively perform the same task.

Given the activations of each model, the objective is to
link corresponding units between model 1 (M1) and model
2 (M2), assuming a potential linear relationship between
their activations. For activations of the `th layer, repre-
sented by Z

(M1) and Z
(M2), the goal is to minimize the

discrepancy between their activations using a linear assign-
ment problem (LAP), for which efficient algorithms exist.

After solving the assignment problem for each layer, the
weights of model 2 are adjusted to closely match those of
model 1. This adjustment involves permuting both weights
and biases for each layer, resulting in weights that generate
activations closely aligned with those of model 1.

This method is computationally efficient, requiring only
a single pass over the training dataset to compute activation
matrices. Furthermore, activation matching at each layer
operates independently of other layers, simplifying the op-
timization process.

	. Introduction
	. Related Work
	. Methodology
	. Preliminaries: Activation Matching
	. Problem Formulation
	. Algorithmic Framework
	. Main Results
	. Assumptions
	. Convergence Analysis

	. Experimental Results
	. Comparison of Algorithms in IID Setting
	. Comparison of Algorithms in Non-IID Setting

	. Conclusions
	. Acknowledgements
	. Additional Analysis
	. Algorithmic Frameworks
	. Additional Theoretical Results
	. Additional Analysis for DIMAT-SGD
	. Additional Analysis for DIMAT-MSGD
	. Additional Analysis for DIMAT-AMSGrad

	. Additional Experimental Results
	. Additional Dataset Comparisons
	. Additional Architecture Comparisons
	. Additional Scalability Analysis
	IID Data Scalability
	Non-IID Data Scalability

	. Exploring Varied Training Epochs
	. Visualization of Communication Overhead
	. Computational Overhead

	. Expanded Explanations of Selected Terminologies
	. Mixing Matrix
	. Activation Matching

