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A. Additional Results
In this section, we present additional results for the evalua-
tion of our proposed T-NeRV architecture. In particular, we
show results from the main paper in terms of the MS-SSIM
metric (Appendix A.1), rate-distortion curves for the indi-
vidual UVG [6] sequences (Appendix A.2), Bjøntegaard
statistics (Appendix A.3), video representation results on
additional datasets (Appendix A.4), encoding and decoding
times (Appendix A.5), qualitative results (Appendix A.6),
and additional results on the byte allocation of compressed
T-NeRV models (Appendix A.7).

A.1. MS-SSIM Results

Video Representation. Tab. 1 lists the video representa-
tion results in the two described settings in terms of the MS-
SSIM metric, analogously to Tab. 2 in the main paper. The
MS-SSIM results paint the same picture: T-NeRV achieves
state-of-the-art results in both settings, with the most promi-
nent improvements observed in dynamic videos. In particu-
lar, we want to highlight the MS-SSIM increase by 0.0423
on the ReadySetGo sequence in the second setting.

Ablations. Tab. 2 shows the ablation study with respect to
the MS-SSIM metric. On the encoder side, the ablated mod-
els use only embeddings (E1), only feature grids (E2), no
temporal augmentation (E3), replace T-NeRV’s ConvNeXt
block with HNeRV’s tiny one (E4), and use HNeRV’s tiny
ConvNexT block while disabling temporal augmentation
(E5). On the decoder side, we employ no flow-guided de-
coder (D1), no AdaIN layers in the T-NeRV blocks (D2),
and regular 5× 5 convolutions (D3). Again, the MS-SSIM
results show the same trend as the PSNR results presented
in Tab. 3 in the main paper, underlining the importance of
each proposed component of the T-NeRV architecture.

Rate-Distortion Curve. The rate-distortion curve on the
UVG dataset in terms of the MS-SSIM metric is depicted
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Figure 1. Rate-Distortion performance of T-NeRV on UVG in
terms of MS-SSIM. Our method outperforms HEVC and the pre-
vious state-of-the-art video INRs across the entire BPP spectrum.

in Fig. 1. Similar to Fig. 5 from the main paper, it shows
that T-NeRV outperforms all baselines across the entire BPP
spectrum for this metric, too. Unfortunately, the authors of
FFNeRV did not collect any MS-SSIM metrics, hence the
omission from this plot.

A.2. Per-Video Rate-Distortion Curves

We complement the rate-distortion analysis from the main
paper (Fig. 5) with rate-distortion curves for the seven
UVG videos in Fig. 2. As indicated, T-NeRV is the first
video INR that outperforms HEVC (x265 with veryslow
preset, no b-frames) on all video sequences. Similar to
the video representation setting, the largest improvements
in visual quality over previous INR-based methods can be
observed in high-motion sequences, such as Bosphorus,
Jockey, ReadySetGo, or YachtRide. On static videos, such as
Beauty, HoneyBee and ShakeNDRy, T-NeRV can match and
sometimes slightly outperform existing video INRs, which
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Model Size Resolution Beauty Bospho. Honey. Jockey Ready. Shake. Yacht. Avg.

NeRV [1] 12.6M (720, 1280) 0.9527 0.9839 0.9941 0.9681 0.9594 0.9799 0.9579 0.9709
E-NeRV [5] 12.5M (720, 1280) 0.9523 0.9898 0.9945 0.9721 0.9730 0.9873 0.9675 0.9766
C-NeRV [3] 12.5M (720, 1280) 0.9523 0.9901 0.9944 0.9713 0.9709 0.9877 0.9680 0.9764
FFNeRV [4] 12.4M (720, 1280) 0.9580 0.9900 0.9947 0.9785 0.9793 0.9863 0.9747 0.9802
HNeRV [2] 12.4M (720, 1280) 0.8677 0.8366 0.9930 0.8554 0.9598 0.8787 0.8059 0.8853
DNeRV [9] 12.4M (720, 1280) 0.9487 0.9742 0.9943 0.9556 0.9510 0.9848 0.9480 0.9652
T-NeRV (Ours) 12.4M (720, 1280) 0.9583 0.9912 0.9946 0.9830 0.9886 0.9886 0.9789 0.9833

NeRV [1] 3.0M (960, 1920) 0.8947 0.9411 0.9830 0.9040 0.8519 0.9348 0.8872 0.9138
E-NeRV [5] 3.0M (960, 1920) 0.8951 0.9423 0.9841 0.8756 0.8417 0.9464 0.8942 0.9113
C-NeRV [3] 3.0M (960, 1920) 0.8951 0.9434 0.9840 0.8735 0.8435 0.9433 0.8930 0.9108
FFNeRV [4] 3.0M (960, 1920) 0.8977 0.9377 0.9841 0.9210 0.8881 0.9450 0.8963 0.9243
HNeRV [2] 3.0M (960, 1920) 0.8949 0.9457 0.9844 0.8812 0.8444 0.9449 0.8917 0.9125
DNeRV [9] 3.0M (960, 1920) 0.8938 0.9452 0.9844 0.8851 0.8526 0.9449 0.8866 0.9132
T-NeRV (Ours) 3.0M (960, 1920) 0.9160 0.9589 0.9887 0.9422 0.9304 0.9584 0.9139 0.9441

Table 1. Video regression results in terms of MS-SSIM on UVG [6] in two settings proposed in [1] and [2]. Best results are marked in
bold, second-best results are underlined. T-NeRV significantly outperforms all previous methods in both settings.

Model Beauty Bospho. Honey. Jockey Ready. Shake. Yacht. Avg.

T-NeRV 0.9464 0.9816 0.9942 0.9752 0.9751 0.9730 0.9616 0.9724

(E1) 0.9469 0.9789 0.9941 0.9737 0.9740 0.9736 0.9613 0.9718
(E2) 0.9468 0.9810 0.9942 0.9682 0.9693 0.9723 0.9620 0.9705
(E3) 0.9469 0.9791 0.9942 0.9708 0.9711 0.9731 0.9594 0.9707
(E4) 0.9469 0.9788 0.9942 0.9699 0.9710 0.9729 0.9591 0.9704
(E5) 0.9456 0.9780 0.9942 0.9678 0.9683 0.9717 0.9549 0.9686

(D1) 0.9466 0.9804 0.9941 0.9717 0.9713 0.9716 0.9541 0.9700
(D2) 0.9411 0.9527 0.9918 0.9702 0.9694 0.9629 0.9521 0.9629
(D3) 0.9467 0.9787 0.9942 0.9709 0.9709 0.9733 0.9592 0.9706

Table 2. Ablation study of T-NeRV in terms of MS-SSIM on the
first 300 frames of UVG sequences. Best results are marked in
bold.

Metric x265 (veryslow) C-NeRV FFNeRV HNeRV

BD-Rate -39.09% -31.62% -21.87% -24.15%
BD-PSNR 0.98 0.73 0.45 0.64

Table 3. Bjøntegaard statistics for T-NeRV.

already drastically outperform the HEVC baseline. Overall,
this demonstrates the versatility of our proposed T-NeRV ar-
chitecture, achieving state-of-the-art results on videos rang-
ing from static to highly dynamic.

A.3. Bjøntegaard Statistics

We present Bjøntegaard statistics for the video compression
experiments on UVG in Tab. 3. Each entry hereby denotes
the increase in BD-PSNR or the decrease in BD-Rate that
T-NeRV achieves over the respective baseline.

A.4. Results on Additional Datasets

In line with previous works [1, 2, 4] we mainly evaluate
our proposed method on the UVG dataset. However, UVG

Model DAVIS MCL-JCV
Size PSNR MS-SSIM Size PSNR MS-SSIM

NeRV 2M 26.33 0.8506 5M 34.88 0.9700
E-NeRV 2M 28.42 0.9081 5M 36.79 0.9809
C-NeRV 2M 28.47 0.9088 5M 36.84 0.9807
FFNeRV 2M 27.25 0.8824 5M 36.30 0.9791
HNeRV 2M 26.53 0.8076 5M 30.67 0.8870
DNeRV 2M 28.21 0.8939 5M 36.44 0.9779
T-NeRV (Ours) 2M 30.81 0.9377 5M 38.12 0.9854

Table 4. Video regression results on DAVIS [7] and MCL-JCV [8].
Best results are marked in bold, second-best results are underlined.

videos are shot at 120 fps, resulting in very smooth videos
even for the sequences that exhibit the highest degrees of
motion, such as e.g. ReadySetGo. This characteristic does
not apply to a large fraction of videos that are encoded and
decoded in the real world. Consequently, the relative per-
formance of INR-based methods on UVG might not nec-
essarily reflect their performance on more common videos
that are less smooth. To that end, we evaluate T-NeRV and
the six baselines on two additional datasets: DAVIS vali-
dation [7] and MCL-JCV [8]. The corresponding results in
terms of both PSNR and MS-SSIM are listed in table Tab. 4.

DAVIS validation. The DAVIS validation set consists of
20 sequences at 1080p of different lengths. Recall that the
model size of hybrid methods such as HNeRV and our pro-
posed T-NeRV depends on the number of frames to be en-
coded. For simplicity, we restrict ourselves to a single con-
figuration for T-NeRV and each of the six baselines, there-
fore extracting the first 60 frames of the 11 sequences that
comprise at least 60 frames. We then train all models with
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Figure 2. Rate-distortion curves of the seven UVG videos. This figure is best viewed digitally.

configurations of 2M parameters for 600 epochs. The re-
sults indicate that T-NeRV can handle non-smooth videos
much better than all of the baselines, outperforming the
second-best method by 2.34 dB of PSNR on average.

MCL-JCV. From the 30 videos in the MCL-JCV dataset,
we select the 16 videos that were shot at 30 fps for a total of
150 frames per sequence at a resolution of 720p. We then
employ configurations of 5M parameters for all models and
train them for 300 epochs. Similarly to the DAVIS dataset,
T-NeRV significantly outperforms all previous methods by
a significant margin (1.28 dB of PSNR improvement over
the second-best method). Interestingly, FFNeRV, arguably
the second-best method on the UVG dataset, does not per-
form well on non-smooth videos. As discussed in Sec. 3.1
in the main paper, this can be attributed to FFNeRV’s ill-
suited dependence on the multi-resolution grid to extract
frame-specific information. Recall that each feature in this
grid is used in the forward pass of at least two frames due to

the grid’s interpolating behavior. While consecutive frames
might be almost identical in smooth 120-fps sequences, they
can differ significantly in less smooth videos, making it im-
possible for the multi-resolution grid to extract truly frame-
specific information.

A.5. Encoding & Decoding Times

We list encoding and decoding times for the different meth-
ods on the DAVIS and MCL-JCV datasets in Tab. 5. Before
discussing the results, we want to emphasize that decoding
speed is arguably the more important metric as videos are
encoded only once, often on specialized hardware, but de-
coded potentially millions of times on consumer devices.
T-NeRV significantly improves on the decoding speeds of
previous hybrid video INRs, decoding videos 2-3 times as
fast as HNeRV and comfortably achieving real-time speeds.
This is in contrast with neural video codecs (NVC) that
often achieve less than 2 fps. While encoding is slower
than previous approaches, we argue that this is warranted
for the above reason as well as the significant increase in
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Dataset Resolution Metric NeRV E-NeRV C-NeRV FFNeRV HNeRV DNeRV T-NeRV

DAVIS 1080p Enc. [min] 37 33 31 56 83 122 119
Dec. [fps] 94.1 115.1 117.1 83.0 19.6 35.7 35.2

MCL-JCV 720p Enc. [min] 35 43 39 46 97 117 103
Dec. [fps] 96.3 107.6 109.2 95.4 17.5 22.3 48.6

Table 5. Encoding/Decoding speeds on an NVidia RTX 3090.

video quality. Moreover, T-NeRV outperforms all previous
methods after significantly fewer epochs, e.g. by 0.33 dB of
PSNR on DAVIS after only 50% of epochs.

A.6. Qualitative Results

We present qualitative results for the video compression
task in Fig. 3, comparing patches of individual frames for
three UVG sequences, where we employ FFNeRV as our
baseline for a multitude of reasons. First, FFNeRV is ar-
guably the best-performing of the previous video INRs, es-
pecially on challenging high-motion videos. Additionally,
it covers a large BPP spectrum, and its implementation is
available with detailed configurations for every data point.1

We obtain FFNeRV frames by training the respective mod-
els on the reference implementation and then decoding the
compressed frames.

Fig. 3 compares patches of three sequences that
range from high-motion (ReadySetGo) to low-motion
(ShakeNDry) with videos compressed at high bitrates
(ReadySetGo and ShakeNDry) to very low bitrates (Jockey).
We also vary the patch size from tiny ones (ReadySetGo)
to very large ones (Jockey). In all of the shown patches, T-
NeRV can extract details much more accurately than FFN-
eRV at the same or lower BPP values.

A.7. Compression as Fine-Tuning

In the main paper, we showed how T-NeRV could automati-
cally fine-tune itself with respect to the target content by al-
locating more or fewer bits to key components, such as the
feature grids. To that end, we showed the byte distribution
of six videos encoded with 9.3M parameter T-NeRV config-
urations and λ = 1 (cf. Fig. 6). The configuration for this
model is listed in Tab. 8 and allocates approximately 48%,
27%, and 24% of the total number of parameters to the de-
coder, the feature grids, and the frame-specific embeddings,
respectively. We expand on this analysis by showing the
byte distribution at different compression rates that we ob-
tain by varying λ ∈ {0.01, 0.1, 0.5, 1.0} while keeping the
model size constant.

Fig. 4 plots the byte distribution for all four λ values,
with the legend shown on the right-most figure. The impact

1This is unlike HNeRV, which only covers the low BPP regime and
does not provide architectural details for the individual data points.

that the compression rate λ has on the byte distribution is
apparent: At a low compression rate of λ = 0.01, the byte
distribution is similar to the parameter allocation, except for
the case of the very static HoneyBee sequence, where the
small amount of GOP-specific information already leads to
much fewer bits being spent on the feature grids. As we
increase λ and compress more, the relative size of the de-
coder and, more significantly, the feature grids start to de-
crease while the relative size of the embeddings rises dras-
tically. At λ = 0.5, the byte distributions start to reveal
the nature of the encoded content, with models spending
more bits on the decoder and the feature grids representing
high-motion sequences, while static video sequences lead
to distributions with fewer bits spent on the grids and the
decoder. This effect is even more visible at λ = 1, where
the relative size of both the feature grids and the decoder
correlate almost perfectly with the degree of motion present
in the video sequence. Additionally, we can also observe
that the reduction in total model size from λ = 0.01 to
λ = 1 is the largest for static sequences and the lowest for
high-motion sequences, which is in line with our expecta-
tion that dynamic videos are more difficult to compress than
static videos.

T-NeRV Configuration: Video Representation (12.4M)

Feature Grids
Temporal Resolutions (64, 128, 256)
Feature Size (30, 9, 16)

Frame
Encoder

Embedding Size (35, 9, 16)

ConvNeXt
Strides (5, 2, 2, 2, 2)
Blocks (3, 3, 9, 6, 3)
Channels (3, 64, 128, 256, 512, 35)

Temporal
Augmentation

Pos. Enc. (1.25, 80)
MLP Dims (160, 512, 512, 5040)
MLP Activation GELU

Temp. MLP
Positional Encoding (1.25, 80)
MLP Dims (160, 256, 256, 128)

Decoder
Channels

Pre-Block (125, 231)
T-NeRV Blocks (231, 192, 160, 134, 111, 93)
Head Layer (3) (134, 12)
Head Layer (5) (93, 5)

Upsampling Factors (5, 2, 2, 2, 2)
Aggregation Window {−2,−1, 1, 2}

Table 6. T-NeRV configuration for video representation (12.4M).
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Jockey Ground Truth T-NeRV (34.50 @ 0.019) FFNeRV (31.17 @ 0.019)

ReadySetGo Ground Truth T-NeRV (37.54 @ 0.114) FFNeRV (35.52 @ 0.133)

ShakeNDry Ground Truth T-NeRV (37.31 @ 0.095) FFNeRV (36.55 @ 0.093)

Figure 3. Qualitative compression results comparing T-NeRV against FFNeRV and the ground truth. Frames are annotated with PSNR @
BPP, where the PSNR is computed for the corresponding frame. This figure is best viewed digitally.
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Figure 4. Byte distribution in videos represented by a T-NeRV model with 9.3M parameters that were compressed with different λ values.
Higher values of λ amount to higher levels of compression. This figure is best viewed digitally.

B. Model Configurations

In this section, we list the configurations that were used for
the video representation and compression tasks.

Video Representation. The T-NeRV configurations that
were used for the two video representation experiments are
listed in Tab. 6 and Tab. 7, respectively. Observe that we

use a smaller ConvNeXt encoder (i.e., fewer channels) to
speed up training in the second setting. Additionally, the
spatial dimensions of the features and embeddings are set
to (h,w) = (8, 16) to fit videos with a 2:1 aspect ratio.

Video Compression. For video compression, we use con-
figurations with strides (5, 3, 2, 2, 2) to encode videos at
1920× 1080 pixels. One configuration with 9.3M parame-
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T-NeRV Configuration: Video Representation (3.0M)

Feature Grids
Temporal Resolutions (64, 128, 256)
Feature Size (11, 8, 16)

Frame
Encoder

Embedding Size (8, 8, 16)

ConvNeXt
Strides (5, 3, 2, 2, 2)
Blocks (3, 3, 9, 6, 3)
Channels (3, 64, 128, 256, 256, 8)

Temporal
Augmentation

Pos. Enc. (1.25, 80)
MLP Dims (160, 512, 512, 1024)
MLP Activation GELU

Temp. MLP
Positional Encoding (1.25, 80)
MLP Dims (160, 256, 256, 128)

Decoder
Channels

Pre-Block (41, 102)
T-NeRV Blocks (102, 85, 71, 59, 49, 41)
Head Layer (3) (59, 12)
Head Layer (5) (41, 5)

Upsampling Factors (5, 3, 2, 2, 2)
Aggregation Window {−2,−1, 1, 2}

Table 7. T-NeRV configuration for video representation (3.0M).

T-NeRV Configuration: Video Compression (9.3M)

Feature Grids
Temporal Resolutions (64, 128, 256)
Feature Size (40, 9, 16)

Frame
Encoder

Embedding Size (26, 9, 16)

ConvNeXt
Strides (5, 3, 2, 2, 2)
Blocks (3, 3, 9, 6, 3)
Channels (3, 64, 128, 256, 256, 26)

Temporal
Augmentation

Pos. Enc. (1.25, 80)
MLP Dims (160, 512, 512, 3744)
MLP Activation GELU

Temp. MLP
Positional Encoding (1.25, 80)
MLP Dims (160, 256, 256, 128)

Decoder
Channels

Pre-Block (146, 160)
T-NeRV Blocks (160, 136, 112, 96, 80, 64)
Head Layer (3) (96, 12)
Head Layer (5) (64, 5)

Upsampling Factors (5, 3, 2, 2, 2)
Aggregation Window {−2,−1, 1, 2}

Table 8. T-NeRV configuration for video compression (9.3M).

ters, which we referenced in Appendix A.7, is described in
Tab. 8.

C. Implementation of Video INR Baselines
Finally, we describe the process of implementing the six
video INR baselines (NeRV [1], E-NeRV [5], C-NeRV [3],
FFNeRV [4], HNeRV [2], and DNeRV [9]) in a common
framework for the video representation experiments.

C.1. Motivation

As mentioned in the main paper, the representational ca-
pacity of video INRs has so far been assessed in two dis-
tinct settings: Content-agnostic methods (NeRV, E-NeRV,
C-NeRV, FFNeRV) have been optimized for a setting where
a large model (12.4M parameters) represents videos at a
resolution of 1280 × 720 pixels, while content-aware ap-
proaches (HNeRV, DNeRV) employed much smaller mod-

els with 3M parameters to represent videos at a resolution
of 1920× 960 pixels, i.e. at a 2:1 aspect ratio.

Thus, we want to compare T-NeRV to the six baselines
in both of these settings. However, no results are available
for (i) content-agnostic methods in the second setting and
(ii) content-aware methods in the first setting. The current
content-aware methods, i.e., HNeRV and DNeRV, can also
not directly be evaluated in the first setting as they can only
fit videos with a 2:1 aspect ratio. Moreover, there are no
open-source implementations of C-NeRV and DNeRV.

Consequently, we implement all of the six baselines in
a common framework that we use to evaluate video repre-
sentation performance. In the following, we describe our
methods to derive suitable configurations for the cases (i)
and (ii) from above.

C.2. 720p at 12.4M Parameters

Content-Agnostic Methods. The four content-agnostic
methods were optimized for the first setting. Thus, we use
their respective default configurations for our evaluation.

Content-Aware Methods. HNeRV employs tiny embed-
dings of dimensions (c, h, w) = (16, 2, 4) in combination
with strides (5, 4, 4, 3, 2) to represent videos with a resolu-
tion of 1920×960 pixels. The remaining parameters are al-
located to the decoder.2 To allow HNeRV to represent 16:9
videos, we change the embedding dimension to (16, 9, 16)
and the strides to (5, 2, 2, 2, 2) to arrive at the target resolu-
tion of 1280× 720 pixels after upsampling. The remaining
parameters are allocated to the decoder. Since DNeRV em-
ploys the same encoder and frame embeddings as HNeRV,
we repeat this procedure for DNeRV. Additionally, we re-
size the difference embedding from (2, 40, 80) to (2, 45, 80)
to reflect the change in the aspect ratio from 2:1 to 16:9. The
collaborative content unit (CCU) is implemented as speci-
fied by equation 5 in [9], and the remaining parameters are
allocated to the decoder.

C.3. 960p at 3M Parameters

Content-Agnostic Methods. We modify the dimensions
of the latent feature from (c, 9, 16) to (c, 8, 16) to repre-
sent videos with a 2:1 aspect ratio with the four content-
agnostic methods. To reflect the higher video resolution, we
change the upsampling factors or strides from (5, 2, 2, 2, 2)
to (5, 3, 2, 2, 2). To scale the default configurations from
12.4M to 3M parameters, we scale the size of the individ-
ual components while keeping the overall distribution of pa-
rameters to the components intact. For instance, if method
X allocates 50%, 30%, and 20% of its parameters to com-
ponents A, B, and C in the default 12.4M parameter config-

2This behavior is explicitly built into the HNeRV reference implemen-
tation. The embedding dimension depends only on the video resolution,
but not on the model size.
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uration, we retain the same percentages at the 3M parameter
configuration.

Content-Aware Methods. The two content-aware meth-
ods provide default configurations for the second setting.
However, in the case of DNeRV, the reported model size
does not account for the size of the difference embeddings,
which consist of more than 3.8M parameters. We rem-
edy this issue by reducing the dimensions of the difference
embeddings from (2, 40, 80) to (2, 10, 20) while shrink-
ing the decoder accordingly to adhere to the 3M parameter
limit. As a consequence, the CCU is inserted after the first
DNeRV upsampling block as opposed to the second block
for the dimensions to match.

C.4. Verifying our Implementations

Before evaluating our implementations of the six baselines
for the video representation task, we verified the correctness
of our implementations by reproducing either published re-
sults or results obtained from the reference implementation.
We successfully validated our implementations for all of
the video INRs except for DNeRV. Despite following the
detailed model description in the paper and spending sig-
nificant amounts of time trying to reproduce the published
results, we were unable to obtain results in a similar range
as the reported ones.

‘
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