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Supplementary Material

7. Dataset Split
7.1. Dataset Creation

Proposing a new benchmark is always challenging and re-
quires meticulous efforts. Since the problem OV-CZSL, re-
quires constructing multiple splits, we create multiple ran-
dom splits and then pick the best split for each dataset by
evaluating seen and unseen accuracy using two standard
baselines. Overall, the steps involved in creation of bench-
mark splits for MIT-states [20] dataset is as follows:

e Step 1: As explained in Paper Section 1.1, the pro-
posed OV-CZSL task is combination of generalized
ZSL and CZSL. As a visual feature backbone, we use
ResNet18 [18], pre-trained on ImageNet [4]. To ensure
that our setup is truly Zero-shot Learning (ZSL) for at-
tributes and objects, we must include all common at-
tributes and objects seen in ImageNet [4] in the seen at-
tributes and object sets. Hence, while creating seen at-
tributes and objects sets for MIT-States, we fist find out
the objects and attributes in MIT-states [20] which are al-
ready present in ImageNet [4]. We exempt those com-
mon attributes and objects, shown in Table 7, from being
part of unseen attributes and objects A* and O*. In other
words, these attributes and objects are always part of seen
set A and O, for every random split.

* Step 2: We randomly select 20-25% attributes and objects
as unseen attributes A* and unseen objects O*.

» Step 3: The set of all the compositions which have seen
attributes and seen objects is denoted as AO. Among this
set, 80% pairs make up the training set Y. The rest 20%
pairs are part of the test and validation set, to evaluate the
model performance on seen attributes, seen objects yet
unseen compositions (AO)*.

e Step 4: Iterating through rest of the valid compositional
pairs present in MIT-States [20], we split the pairs in 3
other sets: AO™* has pairs which have seen attribute and
unseen object, A*O has pairs with unseen attributes and
seen objects, and A*O*. Hence, test set Y composes of
{(AO)*, AO*, A*O, A*O*}.

e Step 5: In order to evaluate on pairs which are already
present in training set, we select 25% and 30% pairs from
training set AO and add 18% samples of these pairs in
the validation and test set. This becomes the set of seen
pair samples in the test and validation set, which is used
for stopping criteria. Similar split of seen pair exists in
CZSL splits as well.

* Step 6: Lastly, we split Y into 45%/55% ratio as valida-
tion and test sets, such that each set of seen-unseen com-
positions are part of validation an test sets. The numbers

for each split are shown in the paper, Table 1.
This process creates one split. We randomly create 10 such
splits for each benchmark. To ensure the stability of the
benchmark split, it requires a balance in performance be-
tween the seen pairs AO and unseen pairs {(AO)*, AO*,
A*O, A*O*}. Hence, for each split, we run two com-
mon CZSL baselines, LabelEmbed (LE) [33] and Com-
pCos [29]. Based on the AUC and difference between
best seen and unseen accuracy, we choose one split as the
benchmark split for OV-CZSL of the dataset. This pro-
cess is performed for all datasets (C-GQA [29] and VAW-
CZSL [37, 43]), but we only show the 10 random splits and
their baselines performance for MIT-States [20] in Table 8.

8. Additional Training Details and Ablation
8.1. Implementation details

Following standard practice in CZSL [28, 29, 33, 39], we
use Frozen ResNet18 [18], pre-trained on ImageNet [4] for
image features (without finetuning) and BERT [5] text em-
beddings for labels. A linear layer on top of BERT [5] fea-
tures is used for pair embeddings, instead of using Object-
Conditioned module from OADis [43]. We use image aug-
mentations (random crop, horizontal flip) for all baselines
and our method, following OADis [43]. Most details for
MIT-States [20] are in the paper, however there is a slight
error. Smoothing factor is @ = 0.8 for MIT-states [20]
and the temperature for cosine similarity § = 0.05. For
C-GQA [29] and VAW [37, 43] as well, the smoothing fac-
tor for label propagation 7' = 0.5, number of neighbors
k = 5, weights for losses are 3 = 0.8, 82 = (3 = 0.95,
and y; = 2 = 0.05. OADis [43] also has losses L., and
Lunseen> Which were originally weighted with 0.1. We keep
this the same for MIT-States [20], but change the weights
for C-GQA [29] to 0.2. Smoothing factor a for C-GQA [29]
and VAW-CZSL [37, 43] is 0.5 and 0.8 respectively. Learn-
ing rate for C-GQA [29] is le-4, with weight decay 5e-5
and Adam optimizer, decay milestone [20-130]. For VAW-
CZSL [37, 43], it has same configuration as C-GQA [29]
with learning decay milestone as [30,40]. We acknowledge
that there are multiple hyperparameters in our setup. How-
ever, we mainly tune the hyperparameters for smoothing
factors (o and 7') and number of neighbors. Other hyper-
parameters are almost same as OADis [43].

8.2. Additional Ablation

Following the paper, all ablation studies are conducted
on MIT-States [20] dataset. The final Test AUC and
HM are the cosidered measures for searching best hyper-



Table 7. Dataset Splits. We propose new benchmark splits forOV-CZSL on datasets MIT-states [20], C-GQA [29] and VAW-CZSL [37,

43].

Datasets

Common Objects

Common Attributes

MIT-states [20] balloon, banana, brass, bubble, bucket, candle, castle,

upright

church, cliff, desk, drum, envelope, fig, laptop,
lemon, library, necklace, orange, pizza, plate,
pot, screw, tiger,vacuum, valley, velvet, wool

Table 8. Using NEL with other baselines. We show effect of NEL for different baselines. All methods using NEL perform better for

OV-CZSL splits, which include one unseen component.

Models Split 1 Split 2 Split 3 Split 4

Split 6 Split 7 Split 8 Split 9 Split 10

LE [33] 0.81/6.57

1.01/7.64 0.75/6.63 0.78/6.69 0.67/6.35

0.82/7.10 087/6.88 092/7.36 0.71/6.34 1.0/7.60

CompCos [29] 1.66/10.70 1.97/10.22 1.53/9.65 1.79/9.88 1.47/9.86 1.97/10.53 1.85/10.65 1.63/10.02 2.05/10.79 1.39/10.58

1.23/8.63 1.49/8.93

1.27/825 1.28/828 1.07/8.10

1.39/8.81 1.36/8.76 1.27/8.69 1.38/856 1.19/9.09

parameters.

Textual Features. Textual features are the source of
regularization and knowledge transfer, which makes these
a crucial design decision. We observe that for zero-shot
learning task, GloVe [36] performs better than BERT [5]
embeddings.  Since BERT is contextual embeddings,
attribute-object embeddings from BERT are more helpful
than GloVe. We also compare with other common word
embeddings like Fasttext [2] and word2vec [30] in Ta-
ble 11. Most word embeddings perform better for unseen
compositions of seen attributes-objects (AO)* and A*O.
We use BERT for all baselines of OV-CZSL since it out-
performs for the most challenging set A*O*. Neighbors.
We use GloVe [36] embeddings for neighbor selection
for two reasons: (1) since these are word embeddings,
they capture attribute features and it’s neighbors more
efficiently. (2) GloVe embeddings have strong seman-
tic structure and arithmetic qualities (e.g., emb(king) +
emb(women) - emb(man) = emb(queen)). Since, BERT [5]
are contextual embeddings, it does not necessarily follow
this structure. GloVe [36] embeddings for single word are
more robust and have algebraic expression in embedding
space, which is why GloVe seemed optimal for neighbor
search. For example, when we compute neighbors for
object ‘elephant’, GloVe [36] features gives neighbors
like: [rhinoceros, rhino, animal, whale] as top neighbors,
which are all large animals and make sense. However,
using BERT [5] embeddings produces top neighbors:
[monkey, lion, camel, lizard, mermaid], which has low
similarity with the ‘elephant’ in general, apart from the
fact all are animals. Moreover, we quantitatively show that
using GloVe [36] embeddings for searching for neighbors
gives better performance in comparison to using BERT [5]
in Table 9.

Another idea is using neighbors from the dataset itself.

Table 9. Ablation for different smoothing factors: We set differ-
ent smoothing factors o for £)g with dataset MIT-states [20], to
empirically find the best value for a.

Emb Neighs  Test@l HM (AO)* AO* A'O A*O"

BERT  External. 1.71 9.56 12.17 324 487 207
GloVe MIT-states 2.13 10.16 17.94 425 7.67 2.40
GloVe  External. 2.41 1094 18.87 549 824 354

For this, instead of using external sources of attributes
and objects, we only use the unseen attributes and objects
to find neighbors from. For smaller dataset like MIT-
states [20], these neighbors do not make much sense but
on a higher level correlate seen attributes with unseen
attributes explicitly. However, the generalizability of model
gets affacted, as the unseen attribute-unseen object pairs
accuracy is better if external sources of attributes and
objects are used (as shown in Table 9). The colum 1 shows
the mebddings used for neighborhood search and column
2 refers to is the neighbors are extracted from external
sources or within the dataset.

Impact of Smoothing Factors In our work, we use two
smoothing facts: avand 7. v is the smoothing term for label
smoothing, whereas 7 is the smoothing term for neighbors
in label propagation. We explain the significance of both
separately. To have a balance between generalization and
learnability, we empirically find the smoothing factor for
MIT-States [20] dataset, and use the same for other datasets.

First, for label smoothing . Let us assume there are total
K labels. For each sample, one of these K labels is correct.
Here in Table 10 we show the smoothing factor changes for
MIT-States [20] dataset. Note that for « = 1, £} is same
as Lao. Hence, the range to vary « is between [0,0.9]. With
a = 0.81in Table 10, the correct label logit is weighted with



Table 10. Ablation for different smoothing factors: We set dif-
ferent smoothing factors a and T for £NE with dataset MIT-
states [20], to empirically find the best value for o and 7.

Table 11. Ablation on different Text Embedding. We show effect
of using different text embeddings for OV-CZSL. We observe that
BERT [5] improves the unseen compositions A*O™ the most, hence

a Test@l HM (AO)* AO* A*O A*O*

0.3 222 1038 1325 385 11.11 5.18
0.5 2.34 10.56 16.75 567 756  4.16
0.8 241 1094 1887 549 824 354
0.9 2.30 10.87 1749 485 8.12 279

T

02 238 10.64 18.74 507 846 290
05 241 1094 1887 549 824 3.54
07 237 11.06 1872 5.10 837 3.5
09 237 1097 18.63 501 865 3.09

factor 1 — a = 0.2, whereas other logits are weighted with
0.8/(K —1).

For label propagation among n neighbors, we use
T = 0.5, which means that the correct label is weighted
with 0.5, as the rest neighbors are weighted with 0.5/n.
Hence, o and 7" are both smoothing factors but for different
purposes. Moreover, the lower the smoothing factor, the
more weightage is given to neighbors/other labels, and
leads to higher accuracy for unseen attribute-unseen object
pair. NEL uses both label smoothing and propagation
smoothing factors. Using higher value of 7' leads to
better generalizability but less learnability. With higher
T, generalizability rediuces, since more weightage is
given to the single correct label. In Table 10, we fix each
smoothing factor and vary the variable for finding the best
hyperparameters.

Different ratio of NEL and main loss In equation 4,
~v1 and 7 control the weights for attributes and object
losses. We follow same values of v; and ~», as mentioned
in OADis [43]. Moreover, the total loss for each embedding
space is weighted sum of Cosine Cross-Entropy and
Neighborhood Expansion Loss as shown in equation 4.
We show experiments for 81 in Table 12. Further values
of B2 and B3 also follow the similar results. Based on eq
4. the weight for £Y§ is 1 — 31. The results show that
giving more weight to Neighborhood Expansion Loss L35,
harms the seen pair accuracy while keeping unseen pair
accuracy. We use 0.8 as final value as it is a trade-off
between seen and unseen accuracy. Since there are various
unseen composition splits to evaluate on for OV-CZSL, i.e.
{(AO)*, AO*, A*O, A*O*}, we select the « based on
only Test AUC and HM. AUC automatically provides the
best trade-off between the seen and unseen accuracy overall
and provides the best balance between L0 and LY.

we use BERT [5] for our approach.

Emb Test@l HM A0 (AO)* A0 AO* A*O"
GloVe 237 1046 1313 1911 1070 383  0.69
word2vec 237 1068 1382 1746 1061 4.19 113
fasttext 233 1014 13.02 1704 1093 488 1.64
BERT 241 1094 1411 1887 824 549 354

Table 12. Ablation for weights for Neighborhood Expansion Loss:
We set different 31, weights for neighborhood expansion loss for
pair embeddings, for MIT-states [20] split 1. We show that using
higher value of 31

f1 Test@l HM (AO)* AO* A*O A*O*

07 223 10.50 16.80 4.83 8.67 4.10
08 241 1094 1887 549 824 354
09 230 10.78 19.87 525 7.05 253

8.3. Open-World evaluation

Current evaluation setup in the paper, is closed world. That
means the model is only evaluated on valid compositions
of seen and unseen attribute-object pairs. However, in
real world, more realistic setting would be open world,
where during evaluation, we do not know valid composi-
tions. CompCos [29] and KG-SP [21] are two state-of-
the-art methods for Open World evaluation for CZSL task.
However, when we train our splits for open world evalua-
tion, these SOTA methods do not perform well on the un-
seen compositions: {AO*, A*O, A*O*}. To make sure
the model can identify the invcalid compositions such as
“ripe dog”, CompCos [29] and KG-SP [21] use feasibility
scores, which removes the invalid compositions from fea-
ture space during inference. Moreover, this feasibility score
is used during training as well, to avoid transfer of knowl-
edge from seen compositions to unseen and invalid compo-
sitions. KG-SP [21] uses ConceptNet to compute the fea-
sibility scores. We use the open-world evaluation for MIT-
States [20] OV-CZSL benchmark, for CompCos [29] and
KG-SP [21]. However, while evaluating in Open-world sce-
nario, both CompCos [29] and KG-SP [21] fail to generalize
to unseen composition { AO*, A*O, A*O*}. Our hypoth-
esis is that for CZSL, all attributes and objects are seen.
Hence, feasibility of pairs of seen attributes and objects,
but unseen compositions can be computed through various
means, such as using feasibility scores of ConceptNet fea-
tures, which is used during training to transfer knowledge
to valid compositions. However, for OV-CZSL, when un-
seen attributes and objects are not known during training,
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Figure 5. Qualitative Results: We show results on MIT-States [20] for different sets, examples with top 3 predictions for an image. Most
incorrect labels are also from unseen compositions Y*, and although capture the attributes in the images, but are not considered correct.
Labels in green are the correct annotation. We also observe redundancy in labels, such as row 1, column 2 blunt blade in A*O. Top
prediction also includes blunt sword. All swords have blades. However, having separate labels for these makes the task harder.

the feasibility scores describing valid compositions are only
used during evaluation. Hence, the model fails to learn the
validity of scores, during inference and fails to perform for
the unseen compositions. Therefore, we conclude that OV-
CZSL is more challenging setup than CZSL, and currently
can be evaluated in Closed-world setup only.

9. Qualitative Results

We show qualitative results on the same datasets. In Fig-
ure 5, we first show for different sets (seen and unseen
pairs), examples of top 3 predictions for an image. All the
predicted labels are part of unseen compositions Y*. Al-
though predictions are not always right, they still represent
the concepts present in the images. The current evaluation
protocol do not evaluate based on if either of attribute or
object is correctly identified, the image should be cosidered
partially correctly classified in compositional task. Another
aspect we observe is that some attributes are also present
in the current vision+language models are tied to correct
labels, even if other labels also are correct. For instance,
“blunt blade” in row 1 Figure 5, A*O is also “blunt sword”.
All swords have blades, but with separate labels the task is
harder. We urge the community to direct the dataset creation
such that visual concepts are classified as one categories,
as opposed to language driving the categorization of visual
concepts. Further, we show some qualitative results to high-
light that our model can still learn and generalize to out-of-
domain data. In instance, in Figure 6 (a), We show the 5
nearest neighbor images from VAW-CZSL [37, 43] dataset,
using the composition feature labels from model trained on
MIT-states [20]. Similarly, (b) shows that if model is trained
on VAW-CZSL [37, 43], it’s nearest neighbors in feature
space for various unseen compositions make sense, when
retrieved from MIT-sates [20]. Moreover, we observe that

for all compositional sets, {(AO)*, AO*, A*O, A*O*}, the
model learn the attribute and object features to generalize to
totally unseen images from different dataset.

10. Limitations.

We emphasize that OV-CZSL is challenging setup since the
problem to discriminating visually similar concepts is still
restricted. For instance, a model can not discriminate peel
from slice and chop. However, we propose this direc-
tion to at least learn that pee 1, s1ice and chop are all ap-
plied to fruits. Hence, if training set has sliced apple,
in test set our model should be somewhat be confident in
predicting chopped pear. With this current setting of
OV-CZSL, we do not claim to differentiate peeling from
chopping, but we propose that sliced potato and
chopped pear are visually more closer than sliced
potatoand raw apple.

Moreover, our evaluation protocol only evaluates for
valid compositions, also referred to as Closed-world set-
ting which is a standard evaluation metric for CZSL bench-
marks [39, 43]. The other evaluation setting uses all possi-
ble compositions for attributes and objects and discard the
invalid compositions during testing. OV-CZSL is an exten-
sion of CZSL with using wider use of ‘open-vocabulary’
for training. However, the during testing, we only evalu-
ate on valid test compositions, rather than for every possi-
ble composition like open-world setting. We quantitatively
show that using open-world evaluation setting is even more
challenging for OV-CZSL but can be potential direction for
future research.

Large Language+Vision Models. We emphasize that
we acknowledge the presence of larger models, however
choose to not include those in this study since the focus
of this work is to lean beyond seen samples, while all these
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Figure 6. Qualitative results for Cross-Dataset Nearest neighbors. (a) We show the 5 nearest neighbor images from VAW-CZSL [37, 43]
dataset, using the composition features from model trained on MIT-states [20]. Similarly, (b) shows that if model is trained on VAW-
CZSL [37, 43], it’s nearest neighbors in feature space for various unseen compositions make sense, when retrieved from MIT-sates [20].

models already are trained on exponential amount of data clarify the scope and limitation of this work to urge the re-
such that no category from academic datasets is unseen for viewers evaluate this work under the same constraints and
these models. Moreover, including CLIP [40] in main pa- limitations.

per Table 5, we show that our method can help these models
improve on subtle attributes fine-tuned learning, but is still
not useful for Zero-shot learning setup. Hence, we want to





