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Supplementary Material

Here we provide an elaborate discussion and additional

evidences on various points mentioned in the main paper.

Mathematical Derivation: The equations in the main pa-

per (Eq. (2)) are derived directly following relevant sections

from Boyd and Vandenberghe [10], Boyd et al. [11], Parikh

and Boyd [65].
Initial sparsity objective Eq. (1) can be re-written in aug-

mented Lagrangian form [11] with Y, µ as auxiliary vari-
ables and ′ implying matrix transpose as:
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After using dual function and variable separation [10, 11],
we get the ADMM updates for E,A and Y:
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We can eliminate the second term by collecting Y inside
the third square term:
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Note that additional Y terms in each update have no effect
on the respective argmin solution. Now using the definition
of the p-norm proximal operator [65] given by:
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we can obtain the Eq. (2) in the main paper using ∗ and L1

soft-thresholding.

Unsupervised vs. Zero-reference LLE: Although similar,

there is a crucial difference between the unsupervised and

zero-reference LLE paradigms [46]. As mentioned previ-

ously, unsupervised LLE solutions like [24, 36, 49, 91, 92,

96] require both poorly lit and well illuminated image sets

for supervision though they need not be paired. On the other

hand, zero-reference LLE solutions [20, 27, 47, 57, 63,

72, 98] do not need any well-lit examples for training and

purely use domain/task dependent loss terms and models

for enhancement. In addition to making the methods more

inexpensive, this also allows for better generalizability due

to low domain dependence. Furthermore, due to explicitly

encoded expert knowledge as domain priors, zero-reference

solutions are smaller in size with simpler architectures and

training curriculums than their unsupervised counterparts.

This enables easy adoption of such techniques to other tasks

as shown in the main paper. Although fair comparison is

possible only between the methods of the same paradigm

[20], still we report our comparison with various unsuper-

vised solutions in Tab. 11. Note that our method beats sev-

eral unsupervised LLE solutions and is competitive against

the best two unsupervised solutions [92] and [96]. [92]

uses a complicated architecture comprising of pretrained

multi-modal Large Language Models, multiple generator-

discriminator pairs, implicit neural representation, collabo-

rative mask attention modules etc. Relative to ours, this is

significantly complex training process without direct inter-

pretability/utility of intermediate results or possible exten-

sion to other enhancement tasks. In our method, we have

focused on encoding the fundamental aspects of the image

formation process and represented it as in a recursive spec-

ularity factorization model. Still our method surpasses [92]

on 4 out of 6 and [96] on 5 out of the 6 reported metrics

individually.

Interpretability: Being a model-driven unrolled network,

our entire framework is easily interpretable as each op-

timization step is clearly represented. This allows di-

rect user intervention and better analysis of the interme-

diate latent factors as done in Fig. 2. Here we repeat

the same analysis with other parts of the shadow dataset

[34]. [34] dataset consists of manually marked dense

shadow regions in images taken from several standard

datasets. Specifically there are five categories of such

images with test split size mentioned in the parenthesis:

shadow ADE (226), shadow KITTI (555), shadow MAP

(319), shadow USR (489) and shadow WEB (511). The

analysis using shadow ADE testset images was shown in

the main paper. Here we similarly plot the factor features

over the background of shadow and non-shadow PCA re-

duced feature space, for other sets. For feature extraction

we use pretrained DINOv2 vits 14 backbone [14] and fac-

tors were computed using direct optimization using Eq. (1),

Eq. (2) and Sec. 3.1. These plots are shown in Fig. 9. Note

how in each case, the extracted features from the factors

lie sequentially over the background of shadow and high-

light image regions starting from highlight regions for the

first factor (indicating glares and specular regions) to com-

plete shadow regions for the last factor (indicating complete

dark pixels). The other illumination types are expected to

lie in between the two extremes and can be observed from



Figure 8. LLE solutions categorization: Data-driven methods

are of mainly 4 types based on the type of input supervision avail-

able with each type having its pros and cons as listed above.

the graph to follow the same. This helps us interpret the

extracted factors as approximations of illumination types at

each pixel into glare, direct light, indirect light, soft shadow,

hard shadows etc.

Factorization Strategies: As mentioned in Secs. 1 and 2

and shown in Tab. 1, various LLE solutions adopt different

factorization strategies. We have provided a non-exhaustive

list in the Tab. 1 but still others are possible. The Frequency

strategy [89] here refers to the low and high pass filtering

of the input to extract coarse and fine image details, which

are then processed separately. On the other hand, spectral

strategy [35] refers to decomposition into phase and ampli-

tude using Fourier representation where phase is assumed to

encode the entire structural information of the scene. Low

rank strategy based methods specifically exploit low rank

structure of the reflectance component of the scene and are

hence somewhat related to the Retinex division. [69] fo-

cuses on hyper-spectral images, whereas [76] uses a com-

plicated quaternion based robust PCA optimization strategy

[12] with no unrolled learning or generalization to other ap-

plications. Wavelets and Multiscale decompositions [3, 18]

build factors like image pyramids and can be considered to

be an extension of the frequency strategy. Decomposing in-

put into extra glare or a shadow component [5, 78] along

with the Retinex factorization has yielded better results and

our method can be understood as the extreme case of such

divisions. Similarities and differences with the often used

intensity based factorization strategy [32, 33] has already

been discussed in the main paper. Note that the global/local

categorization here refers to whether the factors and the sub-

sequent processing is limited to local image regions.

Training: Training time of our RSFNet is quite fast. For

Figure 9. Factor interpretability and analysis: We perform

factor distribution analysis Fig. 2 on four additional shadow

datasets [34] (from top to bottom - shadow KITTI, shadow MAP,

shadow USR and shadow WEB). Each plot represents features of

shadow and non-shadow regions which forms the background and

cluster centers of the five factors feature distributions are plotted

in the foreground. Note how in each case the series of factors is

sequentially from bright to the dark region similar to Fig. 2 which

provides more evidence to the validation done in Sec. 3.



any Lol dataset [52, 87, 95], it takes approximately 30 min-

utes on a single 1080Ti GPU machine for the complete 50

epochs. We first train the factorization and fusion mod-

ules together for 25 epochs using Eq. (6) and then freeze

the factorization parameters for next 25 epochs to train the

fusion module with Eq. (9). Initial versions of the sys-

tem involved slow decay of factorization learning rate with-

out abrupt freezing but the current setting was adopted to

clearly ascertain the effect of each module training. Hence

we do not use any learning rate decay during our training

but the reader is welcome to experiment with the same for

their own datasets.

Initialization: During training instead of using any hard

coded initialization value for thresholds, we allow per in-

stance initialization. Specifically, we use 0.9 ratio of learned

threshold values and 0.1 fraction of the image mean for ini-

tialization with initial threshold values set to dataset mean.

This setting is also followed during inference and all the re-

sults reported in the main paper or supplementary are with

this setting only.

Several optimization methods are sensitive to initializa-

tion conditions and when they are unrolled into model lay-

ers [12, 51]. During implementation sources of randomness

can be corrected by properly seeding the random number

generators of the deep learning and the numerical algorithm

libraries using:

np.random.seed(c)

torch.random.seed(c)

where c is some fixed integer constant. We use c = 2 in our

LLE experiments and the values of all the hyper-parameters

will be provided with the final code in a config file.

Testing: For inference, we can edit the weights of the fac-

tors before concatenation and input into the fusion module

to allow varying results. Although all results in the main

paper are obtained without any weight manipulations (i.e.

all factors are equally important with each the weight vector

corresponding to E0 to E5 set to [1,1,1,1,1,1]), better results

are possible if dataset specific finetuning is allowed. If this

is followed our scores on Lol-synthetic dataset in the main

quantitative results table Tab. 10 can be updated to Tab. 6 by

using w = [1, 4, 4, 4, 4, 4]. Yet another setting which can be

configured is related to the bilateral filtering step which in-

cludes window size, color sigma and the spatial sigma in

both of the horizontal directions. The values can be cho-

sen based on the expected noise in the input datasets but we

keep them constant as window size=5, color sigma=0.5 and

spatial sigma=1 for all our experiments in Tab. 10

Datasets: The details of five no-reference (Tab. 4) and four

Lol datasets Tab. 10 are given below:

• Lolv1 [87]: It contains 500 low light and well lit image

pairs of real worl scenes with 485 for training and 15 for

testing in the standard split. Each image is 400 × 600 in

resolution with mean intensity = 0.05 (i.e. very low light).

• Lolv2-real [95]: It is an extension of Lolv1 dataset with

689 images in training and 100 in testing set. Mean in-

tensity of images is 0.05 and resolution is same = 400 ×

600. Note that majority of the images in the testing set of

Lolv2 are present in the training set of Lolv1 and hence

Lolv1 trained models should not be evaluated directly on

Lolv2 testset.

• Lolv2-synthetic [95]: As Lolv1 mostly contains only

indoor scenes with heavy dark channel noise, Lolv2-

synthetic presents a significant domain shift with mean

intensity=0.2 and resolution= 384 × 384. The scenes are

both indoors and outdoors and the supervision data is ob-

tained by synthetically reducing the exposure by using the

raw image data and natural image statistics.

• VE-Lol [52]: Vision Enhancement in LOw Level vision

dataset (VE-LOL-L-Cap) consists of 1500 image pairs

with 1400 vs. 100 training to test split. The trainset here

consists of multiple under-exposed images of the same

scene but the test set is similar to Lolv2-real. Dataset

image resolution=400 × 600 and mean intensity=0.07.

Multiple exposure settings here help ascertain model’s

robustness to input perturbations.

Other five datasets [46] are no-reference (i.e. with-

out any ground truth well lit image) and are used for

perceptual quality evaluation and generalization assess-

ment. Although varying number of images have been

reported in the previous literature for a few of these

datasets [3, 27, 46], we use the download links provided

by Li et al. [46] with the following brief description of

each dataset:

• DICM [42]: 69 images, mean=0.32, mixed exposure set-

tings, variable resolutions, real scenes, varying scene in-

cluding macros, landscapes, indoors, outdoors etc.

• LIME [29]: 10 images, mean=0.15, varying resolutions,

real scenes, varying scene types.

• MEF [56]: 17 images, mean=0.15, resolution=512× 340,

relatively darker images, varying scene types.

• NPE [85]: 85 images, mean=0.31, varying resolution,

both over and under exposed image regions, mostly out-

door scenes.

• VV [82]: 24 images, mean=0.26, resolution=2304 ×

1728, large images, both over and under exposed image

regions, both indoor/outdoor scene types.

These results are listed in Tab. 2 Tab. 4 and Tab. 10. As can

be observed in the tables, our method achieves best score

over all with best or second best performance on several

benchmarks across multiple metrics.



Type PSNRy ↑ SSIMy ↑ PSNRc ↑ SSIMc ↑ NIQE ↓ LPIPS ↓

w/o weights 19.73 0.843 19.39 0.745 3.701 0.278

weighted 20.22 0.884 17.23 0.815 4.286 0.159

Table 6. Factor Weights: Our updated results on Lol-synthetic dataset [95] if we additionally allow the user to configure factor weights

before concatenation and input to the fusion module. To be understood in the wider context of Tab. 2 and Tab. 10.

Configuration Factorization Fusion Experiment

Trad. Deep Trad. Deep

C11 ✓ ✓ RSFNet LLE Fig. 3

C10 ✓ ✓ Ablation (w/o Fusion) Tab. 3

C01 ✓ ✓ Extension Apps. Fig. 6

C00 ✓ ✓ User Apps. Fig. 7

Table 7. System Configurations: Various possible configurations of our proposed technique. Two central steps of our method, factorization

and fusion, could each be either traditionally estimated with manual model-based optimization or using deep data-driven methods. This

gives rises to four possible configurations all of which are used in one or the other experiment in the main paper

Metrics: Most frequently reported metric for LLE task is

PSNR (Peak Signal to Noise Ratio). Although traditional

usage of PSNR has been for denoising of grayscale images

with only single channel but now it also has been extended

to multichannel scenarios for various tasks. PSNR for a

predicted enhanced output ŷ is given as:

p = 10 log

[
1

N

N
∑
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2

M2

]

, (11)

where N is total number of pixels and M is the peak pixel

value which depending upon the situation is either 1.0 or

255. Eq. (11) is straightforward in case of single channel

image but there is slight ambiguity in case of multichannel

prediction. Different results are obtained depending upon

whether per channel mean is considered inside the loga-

rithm or outside. Correct way of multichannel PSNR defi-

nition is to consider it inside the logarithm i.e. to take mean

square error over all the channels simultaneously instead of

individually and then averaging it as shown below:

p = 10 log
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1
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2
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Yet another issue is during the YCbCr to rgb conver-

sion for PSNR evaluation of Y only channel. Most of the

codes directly use the in-built functions from the available

libraries like opencv or PIL. The conversion involves ap-

plications of a transformation matrix which differs from li-

brary to library depending upon whether the input signal is

assumed to be analog or digital e.g. opencv applies the fol-

lowing transformation assuming analog input:

Y ← 0.299 ·R+ 0.587 ·G+ 0.114 ·B (13)

whereas Matlab prefers the digital transformation as:

Y ← 0.2568 ·R+ 0.5041 ·G+ 0.0979 ·B (14)

This leads to variability in results (approximately 1 PSNR

difference) depending upon the conversion library chosen.

In our opinion Eq. (14) should be chosen and the PSNR

tables should clearly highlight that it is a single Y channel

evaluation.

Configurations: Our proposed method can be used for var-

ious applications in one of four possible configurations as

shown in Tab. 7. This is dependent on whether the fac-

torization and fusion steps are carried out via traditional

model-based optimization or learned using data-driven deep

networks. Model-based solutions are better generalizable

but slower with lesser performance than data-driven solu-

tions. In our main paper we have used all four configura-

tions in one or the other experiment as listed in the Tab. 7.

For traditional factorization we use solution to the direct

specularity estimation optimization equation Eq. (1) using

Eq. (2), whereas for deep solution we use the unrolled lay-

ers Fig. 3 to learn the associated optimization thresholds

using our Factorization Modules which are learned form

the dataset in a data-driven fashion. Fusion is either task

specific deep network or simply the running average as de-

scribed in Eq. (10). This highlights the flexibility and ver-

satile nature of our proposed technique which allows easy

integration with pre-existing fusion methods with observed

improvement in all scenarios.

Extensions: In order to show the utility of our factors be-

yond the LLE task, we have shown the advantage of using

them along with the pre-existing multi-task enhancement



Figure 10. AirNet: (a) Block diagram from [45]. CBDE (b) refers to Contrastive-Based Degradation Encoder, DGG (c) means Degradation

Guided Groups and DGM (d) is Degradation Guided Module. For complete details refers to [45]. For our usage, we alter first conv layer

(first deep blue block on top-left (a)) and the first conv layer in CBDE (first deep blue block on top-right (b)).

TASK −→ DEHAZE [44] DERAIN [93] DEBLUR [62] Mean

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DL [19] 20.54 0.826 21.96 0.762 19.86 0.672 20.78 0.753

TransWeather [37] 21.32 0.885 29.43 0.905 25.12 0.757 25.29 0.849

TAPE [53] 22.16 0.861 29.67 0.904 24.47 0.763 25.43 0.843

AirNet [45] (multi-task) 21.04 0.884 32.98 0.951 24.35 0.781 26.12 0.872

AirNet [45] (uni-task) 23.18 0.900 34.90 0.966 26.42 0.801 28.17 0.889

AirNet [45] + Ours 24.96 0.929 36.19 0.972 27.29 0.827 29.48 0.909

% Improvement +7.68 +3.22 +3.70 +0.60 +3.29 +3.25 +4.65 +2.25

Table 8. Prior Induction: Our factors can induce structure prior in an existing base model [45] and improve performance for multiple

enhancement tasks. Here we show extension of Tab. 5 in the main paper in the wider context of similar methods.

NIQE ↓ SNR [90] RFormer [13] HEP [96] NeRCo [92] RSFNet (Ours)

DICM [42] 3.622 3.076 4.064 3.553 3.230

LIME [29] 3.752 3.910 3.981 3.422 3.800

MEF [56] 3.917 3.135 3.648 3.152 3.000

NPE [85] 3.535 3.63* 2.986 3.241 3.310

VV [82] 2.887 2.183 3.596 3.169 1.960

Mean 3.543 3.187 3.655 3.307 3.060

Table 9. Generalized Performance: Performance generalization comparison (Tab. 4 extension) of best ranking (Tab. 11) two supervised

LLE solutions (first two columns: SNR [90], RFormer [13]) and two unsupervised LLE solutions (last two columns: HEP [96], NeRCo

[92]) vs. our zero-reference RSFNet method on five no-reference benchmarks namely: DICM [42], LIME [29], MEF [56], NPE [85] and

VV [82]. Our method is able to generalize better to unseen data compared to others as observed from the overall lowest NIQE scores

[60] in the last row. (SNR, HEP and NeRCo results computed using provided pretrained weights with Lolsyn checkpoint where ever

applicable and all images resized to 512x512 before processing to avoid dataloader errors. For RFormer, results downloaded from their

official homepage. * refers to the incomplete NPE dataset results as available).

networks. Specifically, we use AirNet [45] (Fig. 10) and al-

ter the input tensor from a single 3 channel input to a tensor

comprising of the concatenated input image and other fac-

tors by simply modifying the in-channels of the first con-

volutional layer in both the main AirNet backbone and the

CBDE module. We train for 500 epochs for each task sep-



arately (with additional 50 epochs for initial warmup) and

keep the default learning rate and decay parameters. We

found no significant difference in training from scratch or

finetuning over the multi-task pre-trained checkpoint. We

also provide the extension of Tab. 5 in Tab. 8 as the full

comparison table using the values as provided by [97] for

various tasks in the multitask configuration. For uni-task

configuration (i.e. one task at a time), we report the values

as provided in the main AirNet paper itself or compute them

ourselves by retraining with default parameters (for deblur-

ring). Note that the we have chosen AirNet over others due

to its overall better performance than others (except IDR).

IDR [97] was not used as the public code is not available at

the time of writing of this paper. As can be observed from

the table, even straightforward introduction of our factors

as priors without any loss or major architecture modifica-

tions can improve the existing performance consistently for

all reported tasks.

Visualizations: We provide several visualizations of our re-

sults mentioned in the main paper. Specifically, we provide

the following:

• Visualization of our five extracted specular factors for the

shadow ADE dataset [34] in Fig. 11.

• Visualization of our five extracted specular factors for the

IIW dataset [6] in Fig. 12.

• Visualization of our five extracted specular factors for ex-

tension applications using deraining [93], dehazing [44]

and deblurring datasets [62] in Fig. 13.

• Our qualitative results on low light image benchmarks in

Fig. 14.

• Qualitative comparison of our results with other zero-

reference LLE solutions in Fig. 15.

• Our results for the deraining application on the Rain100L

dataset [93] in Fig. 16.

• Our results for the dehazing application on the RESIDE

SOTS outdoor dataset [44] in Fig. 17.

• Our results for the deblurring application on the GoPro

dataset [62] in Fig. 18.

• High resolution versions of the user controlled edited im-

ages (Fig. 7) in GIMP [80] in Fig. 19.

• Extended quantitative comparison scores with contempo-

rary traditional and zero-reference solutions (extension of

Tab. 2) in Tab. 10.

• Quantitative comparison of our method with contempo-

rary unsupervised LLE solutions on three Lol bench-

marks in Tab. 11.

Generalization: Additionally, we also provide generaliza-

tion performance comparison of various LLE solutions, in-

cluding recent supervised and unsupervised methods, on

the unseen data using images from standard no-reference

LLE benchmarks (i.e. without any ground truth) in Tab. 9 .

We report NIQE scores [60] to assess the overall perceptual

quality and the naturalness of the generated results. As can

be seen from the Tab. 9, our method, being a zero-reference

solution, generalizes better due to low dependence on the

training dataset compared to the supervised and the unsu-

pervised counterparts. This generalization across unseen

datasets, along with generalization to other applications

like deraining, dehazing etc., proves the advantage of zero-

reference methods over other types of solutions.



Figure 11. Factor Visualizations (outdoors): We show visualizations of our extracted five specular factors for various scenes. Input

images (blue box) are taken from [34] dataset and factors are rescaled for visualization. Note how various regions are captured in the

respective factors depending upon whether they are illuminated by directly, indirectly or in shadows.



Figure 12. Factor Visualizations (indoors): We show visualizations of our extracted five specular factors for various scenes. Input images

(blue box) are taken from [6] dataset and factors are rescaled for visualization. Note how various regions are captured in the respective

factors depending upon whether they are illuminated by directly, indirectly or in shadows.



Figure 13. Factor Visualizations (extensions): We show visualizations of our extracted five specular factors for various scenes with

different degradations. Input images (green box) are taken from 3 degraded images datasets [44, 62, 93] and factors (blue boxes) are

rescaled for visualization. Note how specific degradation gets highlighted in different factors depending on the scene and the type of

degradation.



Figure 14. Our LLE Results: Additional low light enhancement results from multiple Lol-x datasets [87, 95]. Each set contains input

image (blue box), ground truth (red box) and our result (green box).



Figure 15. Qualitative Comparisons: Additional low light enhancement comparisons (Fig. 4 extension). Each set row in the grid contains

results from: [SDD[31], ECNet[98], ZDCE[27]]; [ZD++[47], RUAS[72], SCI[57]]; [PNet[63], GDP[20], RSFNet(Ours, green box)]. Our

results preserve the naturalness of the original scene without over/under exposing intensity or color saturation, which is also quantitatively

supported by our overall better NIQE/LOE scores in Tab. 4 and Fig. 5.



Figure 16. Our Deraining Results: Additional results (Fig. 6 extension) for the deraining application on the Rain100L dataset [93].



Figure 17. Our Dehazing Results: Additional results (Fig. 6 extension) for the dehazing application on the RESIDE dataset [44].



Figure 18. Our Deblurring Results: Additional results (Fig. 6 extension) for the deblurring application on the GoPro dataset [62].



Figure 19. User-controlled Edits: Here we show high resolution version of our results in Fig. 7. For three scene from top to bottom we

show modification of illumination specularity, indoor lighting color and outdoor lighting intensity respectively. All edits were carried out

in GIMP [80] using our factors as layers and only global layer operations like curve adjustments, blurring, layer blending etc. were used

without any local selection or modifications. Notice how our factors seamlessly merge to render such edits preserving the naturalness of

the original image and without any additional artifacts. Note that these are only three representative applications and several other edits are

possible with appropriate masking, color adjustments and even cross image layers harmonization.



Paradigm Traditional Model Based Zero-reference

Method
LIME

[29]

DUAL

[100]

SDD

[31]

ECNet

[98]

ZDCE

[27]

ZD++

[47]

RUAS

[72]

SCI

[57]

PNet

[63]

GDP

[20]

RSFNet

(Ours)

#Params - - - 16.5M 79.42K 10.56K 3.43K 0.26K 15.25K 552K 2.11K

Lolv1 [87] (dataset split: 485/15, mean≈ 0.05, resolution: 400× 600)

PSNRy ↑ 16.20 15.97 15.14 18.01 16.76 16.38 18.45 16.45 19.85 17.68 22.17

SSIMy ↑ 0.695 0.692 0.754 0.644 0.734 0.645 0.766 0.709 0.718 0.678 0.860

PSNRc ↑ 14.22 14.02 13.34 15.81 14.86 14.74 16.40 14.78 17.50 15.80 19.39

SSIMc ↑ 0.521 0.519 0.634 0.469 0.562 0.496 0.503 0.525 0.550 0.539 0.755

NIQE ↓ 8.583 8.611 3.706 8.844 8.223 8.195 5.927 8.374 8.629 6.437 3.129

LPIPS↓ 0.344 0.346 0.278 0.358 0.331 0.346 0.303 0.327 0.340 0.375 0.265

Lolv2-real [95] (dataset split: 689/100, mean≈ 0.05, resolution: 400× 600)

PSNRy ↑ 19.31 19.10 18.47 18.86 20.31 19.36 17.49 19.37 20.08 15.83 21.46

SSIMy ↑ 0.705 0.704 0.792 0.613 0.745 0.585 0.742 0.722 0.691 0.627 0.836

PSNRc ↑ 17.14 16.95 16.64 16.27 18.06 17.36 15.33 17.30 17.63 14.05 19.27

SSIMc ↑ 0.537 0.535 0.678 0.459 0.580 0.442 0.493 0.540 0.539 0.502 0.738

NIQE ↓ 9.076 9.083 4.191 9.475 4.191 8.709 6.172 8.739 9.152 6.867 3.769

LPIPS↓ 0.322 0.324 0.280 0.360 0.310 0.340 0.325 0.294 0.340 0.390 0.280

Lolv2-synthetic [95] (dataset split: 900/100, mean≈ 0.2, resolution: 384× 384)

PSNRy ↑ 19.16 17.16 17.93 18.21 19.65 19.81 14.91 17.09 18.29 13.26 19.82

SSIMy ↑ 0.843 0.812 0.787 0.842 0.884 0.882 0.720 0.825 0.849 0.602 0.893

PSNRc ↑ 17.63 15.61 16.47 16.75 17.76 17.58 13.40 15.43 16.62 11.97 17.13

SSIMc ↑ 0.787 0.742 0.725 0.769 0.814 0.811 0.640 0.744 0.773 0.481 0.816

NIQE ↓ 4.685 4.741 4.335 4.311 4.357 4.257 5.092 4.652 4.308 − 4.404

LPIPS↓ 0.174 0.194 0.235 0.178 0.142 0.157 0.365 0.203 0.160 0.311 0.157

VE-Lol [52] (dataset split: 1400/100, mean≈ 0.07, resolution: 400× 600)

PSNRy ↑ 19.31 19.10 18.47 18.72 20.31 19.36 17.49 19.37 20.39 16.29 21.18

SSIMy ↑ 0.705 0.704 0.792 0.610 0.745 0.585 0.742 0.722 0.715 0.628 0.817

PSNRc ↑ 17.14 16.95 16.64 16.15 18.06 17.36 15.33 17.30 17.64 14.42 18.06

SSIMc ↑ 0.537 0.535 0.678 0.457 0.580 0.442 0.493 0.540 0.557 0.498 0.714

NIQE ↓ 9.076 9.083 4.191 9.482 8.767 8.709 6.172 8.739 9.073 7.027 3.782

LPIPS↓ 0.322 0.324 0.275 0.418 0.310 0.340 0.390 0.355 0.368 0.444 0.397

Mean Scores (Lolv1 [87], Lolv2-real [95], Lolv2-syn [95] and VE-Lol [52])

PSNRy ↑ 18.50 17.83 17.50 18.45 19.26 18.73 17.09 18.07 19.65 15.88 21.16

SSIMy ↑ 0.737 0.728 0.781 0.677 0.777 0.674 0.743 0.745 0.743 0.634 0.854

PSNRc ↑ 16.53 15.88 15.77 16.25 17.19 16.76 15.12 16.20 17.35 14.15 18.45

SSIMc ↑ 0.596 0.583 0.679 0.538 0.634 0.548 0.532 0.587 0.605 0.504 0.758

NIQE ↓ 7.855 7.880 4.106 8.028 6.385 7.468 5.841 7.626 7.791 6.826 3.763

LPIPS↓ 0.291 0.297 0.266 0.329 0.273 0.296 0.346 0.295 0.302 0.379 0.276

Table 10. Quantitative comparison of our method RSFNet with other traditional and zero-reference solutions on multiple lowlight

benchmarks and six evaluation metrics. Shown here are scores for two datasets Lolv1 [87] and Lolv2-real [95] with mean value across all

datasets in the last sub-table. Our scores here are same as the ones reported in last sub-table in Tab. 2 in the main paper (key: ↑ higher

better; ↓ lower better; bold: best; underline: second best; ’-’: NaN error computing value).



Paradigm Supervised LLE Unsupervised LLE Zero

Reference

Method

URe-

tinex

[88]

CUE

[105]

SNR

[90]
RFormer

[13]

EGAN

[36]
HEP [96]

PairLIE*

[24]

CLIP-LIT

[49]

NeRCo*

[92]
RSFNet

(Ours)

Lolv1 [87] (dataset split: 485/15, mean≈ 0.05, resolution: 400× 600)

PSNRy ↑ 22.16 24.57 28.33 28.81 19.69 20.82 20.51 14.13 25.53 22.15
SSIMy ↑ 0.900 0.852 0.910 0.914 0.764 0.874 0.840 0.659 0.860 0.860
PSNRc ↑ 19.84 21.67 24.16 25.15 17.48 20.23 18.47 12.39 22.95 19.35
SSIMc ↑ 0.824 0.769 0.840 0.843 0.652 0.790 0.743 0.493 0.784 0.755
NIQE ↓ 3.541 3.198 4.016 2.972 4.889 3.295 4.038 8.797 3.538 3.146
LPIPS ↓ 0.168 0.277 0.207 0.193 0.327 0.223 0.290 0.359 0.243 0.265

Lolv2-real [95] (dataset split: 689/100, mean≈ 0.05, resolution: 400× 600)

PSNRy ↑ 22.97 24.48 23.20 24.80 21.27 20.87 − 17.03 − 21.59
SSIMy ↑ 0.900 0.848 0.893 0.888 0.770 0.860 − 0.696 − 0.843
PSNRc ↑ 21.09 22.56 21.48 22.79 18.64 18.97 − 15.18 − 19.39
SSIMc ↑ 0.858 0.799 0.848 0.839 0.677 0.808 − 0.533 − 0.745
NIQE ↓ 4.010 3.709 4.141 3.594 5.503 3.618 − 9.220 − 3.701
LPIPS ↓ 0.147 0.270 0.199 0.228 0.321 0.218 − 0.328 − 0.278

Lolv2-synthetic [95] (dataset split: 900/100, mean≈ 0.2, resolution: 384× 384)

PSNRy ↑ 20.35 18.48 25.89 27.66 18.18 17.69 21.13 17.65 18.55 20.15
SSIMy ↑ 0.888 0.803 0.957 0.962 0.843 0.828 0.866 0.840 0.745 0.895
PSNRc ↑ 18.25 16.49 24.14 25.67 16.57 15.62 19.07 16.19 16.07 17.18
SSIMc ↑ 0.821 0.734 0.927 0.928 0.772 0.752 0.794 0.772 0.673 0.817
NIQE ↓ 4.338 4.165 3.969 3.939 3.831 4.692 4.946 4.690 3.735 4.404
LPIPS ↓ 0.195 0.283 0.065 0.076 0.188 0.283 0.224 0.177 0.378 0.159

Mean Scores (Lolv1 [87], Lolv2-real [95], Lolv2-syn [95])

PSNRy ↑ 21.83 22.51 25.81 27.09 19.71 20.46 20.82 16.27 22.04 21.30

SSIMy ↑ 0.896 0.834 0.920 0.921 0.792 0.854 0.853 0.732 0.803 0.866

PSNRc ↑ 19.73 20.24 23.41 24.54 17.56 18.27 18.77 14.59 19.51 18.64

SSIMc ↑ 0.834 0.767 0.872 0.870 0.700 0.783 0.769 0.599 0.729 0.772

NIQE ↓ 3.963 3.691 4.042 3.502 4.741 3.868 4.492 7.569 3.637 3.424

LPIPS ↓ 0.170 0.277 0.157 0.166 0.279 0.241 0.257 0.288 0.311 0.234

Table 11. Quantitative comparison of our method RSFNet with five other Unsupervised LLE solutions [24, 36, 49, 92, 96] and four

recent Supervised LLE solutions [13, 88, 90, 105] for reference. Note that the latter two categories require both low-light and well-lit

images, either unpaired or paired, for supervision during training. The final average scores are presented in the last sub-table. (* For

PairLIE [24] and NeRCo [92], training set includes Lolv2 test images, hence the results are not estimated for Lolv2 and average computed

using other two scores. Even with zero-reference training requirements, our method (last column) is able to perform competitively against

all unsupervised solutions. For [92] and [96], our method beats both of them separately on 4/6 and 5/6 metrics. Note that supervised

solutions require significantly more supervision information during training and can not be compared directly with other categories. Here

they are shown only for reference (Best score in each category here is in bold in the last sub-table. Our method in the last column gives the

best mean results among Zero-Reference methods as shown elsewhere.).
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