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A. Network Architecture
Our head decoder consists of a view-independent decoder
and a view-dependent decoder. An expression latent code
z ∈ R256 is first fed into a single linear layer with a leaky-
ReLU, and then reshaped into 256 × 8 × 8. Similarly, the
gaze direction of each eye is fed into a linear layer with a
leaky-ReLU, and then reshaped into 16 × 2 × 2 for each.
The gaze features are then only concatenated where the eye
balls are located in the UV space, with the rest zero-padded.
For view-dependent decoding, we take the unit vector di-
rection from the rendering camera to the head center, and
feed it into a linear layer with a leaky-ReLU to obtain a 8-
dim latent feature, which is repeated across spatial dimen-
sions for view-conditioning. The input features are con-
catenated and then fed into both decoders. Both the view-
independent and view-dependent decoders consist of multi-
ple up-sampling layers based on a transpose convolutional
layer (4 × 4 kernel, stride 2) followed by a leaky-ReLU
with channel sizes of (272, 256, 128, 128, 64, 32, 16, 125)
and (280, 256, 128, 128, 64, 32, 16, 4) respectively. The
eye decoder also uses a similar design while an in-
put spatial resolution to the up-sampling layers of 4 ×
4. The relative head rotation and position are simply
repeated across the spatial dimensions. We also con-
catenate a visibility mask of eyeballs in UV space by
jointly rasterizing the coarse head mesh and the eye-
balls to account for the shadows cast by the eyelids.
The channel sizes of both view-independent and view-
independent layers are (23, 256, 128, 128, 64, 64, 122),
(31, 256, 128, 128, 64, 64, 7) respectively. Note that we
use weight normalization [7] for all linear layers and up-
sampling layers, and untied bias [5, 6] for all up-sampling
layers.

B. Discussion: Appearance Representation
In this section, we describe how we derive our specular term
from the following rendering equation [3]:

c(ωo) =

∫
S2
L(ωi)V (ωi)ρ(ωo,ωi)max(0,ωi · n)dωi,

(S1)

where ωi and ωo are incoming and outgoing light direc-
tions, L is the incoming light intensity, V is the visibility
term, ρ is the BRDF, and n is the surface normal. Assum-
ing the specular BRDF is represented with the general mi-
crofacet model, the specular component of BRDF is defined
as follows:

ρS(ωo,ωi) =
F (ωo,ωi)S(ωo)S(ωi)

π(ωi · n)(ωo · n)
D(h) (S2)

= M(ωo,ωi)D(h), (S3)

where F is the Fresnel term, S is the geometric attenua-
tion term, and h is the halfway vector. Following Wang
et al. [9], we parameterize the normal distribution function
(NDF) D(h) as spherical Gaussian Gs(p;q, σ) (Eq. 6 in the
main paper). According to Wang et al. [9], the remaining
term M is smooth and can be approximated as a constant
across each Gaussian. After a spherical warping (Eq. 17-22
in [9]), we approximate Eq. S3 as:

ρS(ωo,ωi) ≈ M(ωo,ωi)Gs(ωi;q, σ), (S4)

where q is the reflection vector. By substituting Eq. S4 into
Eq. S1, our specular term becomes:∫
S2
(V (ωi)M(ωo,ωi)max(0,ωi·n))L(ωi)Gs(ωi;q, σ)dωi.

(S5)
When σ ≪ 1, the value inside the integral is 0 unless ωi

is close to q, which is determined by the input view ωo.
Therefore, we further approximate Eq. S5 by moving and
combing all view-dependent terms together (denoted as vk)
except the incoming radiance L and NDF Gs as follows:

cspecular
k = vk(ωo)

∫
S2
L(ωi)Gs(ωi;q, σ)dωi. (S6)

Importantly, we parameterize vk(ωo) using a neural net-
work, enabling end-to-end optimization with the remain-
ing components to faithfully reproduce image observations.
Thus, our model is flexible enough to represent specular re-
flection beyond the general microfacet model [9] or single-
bounce reflection. We empirically find that this simple for-
mulation is fast to compute, and stable to optimize. It also
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Table S1. Ablation Study. The top three techniques are high-
lighted in red, orange, and yellow, respectively. We use 3D Gaus-
sians with the explicit eye models for the geometric representa-
tions.

Method Metrics
PSNR ↑ SSIM ↑ LPIPS ↓

Ours 34.042 0.858 0.148
Ours w/o monoSH 33.762 0.853 0.152

Ours w/o view-dep nml. 33.927 0.864 0.148
SG [9, 11] 33.778 0.855 0.147

supports modeling both diffuse and highly reflective areas
in a unified manner. In our paper, we constrain the specu-
lar BRDF to monochrome to prevent the specular term from
overfitting diffuse components. Supporting color changes in
specular highlights caused by dielectric materials or multi-
bounce specular reflection can be addressed in future work.

C. Ablation Study
In this section, we provide ablation studies to validate our
key design choices.
Higher-order Monochrome SH. Our diffuse color is based
on spherical harmonics. To support high-frequency shad-
ows, our model decodes additional monochrome SH coef-
ficients up to 8-th order. We compare our approach with
one where we remove 4-th to 8-th order monochrome SH
coefficients with the remaining components being identical.
Fig. S1 shows that our approach captures more precise shad-
ows. The quantitative evaluation in Tab. S1 also shows that
adding the monochrome SH coefficients improves overall
reconstruction accuracy. Note that while some recent works
utilize explicitly computed shadow maps [1, 2, 8], this is in-
tractable for real-time relighting with high-frequency envi-
ronments. Improving the sharpness of shadows in real-time
relighting even further is an interesting direction for future
work.
View-dependent Normal. Another component in our ap-
pearance model is the view-conditioned surface normal.
We compare our approach with one where we remove
view-conditioning when decoding the surface normal. In-
terestingly, the improvement does not clearly appear in
both qualitative and quantitative comparisons (see Tab. S1).
We hypothesize that our view-conditioned visibility term
can compensate for some of the errors caused by view-
independent surface normals in cylindrical regions. While
this allows the baseline using view-independent normals
to achieve comparable performance under discrete point
lights, this would likely cause inaccurate reflection on con-
tinuous environments. We keep our view-conditioned nor-
mals as this offers a more geometrically correct interpreta-
tion for the cylinder-like 3D Gaussians.
Spherical Gaussian Formulation. Prior works us-

(a) GT (b) w/ monoSH (c) w/o monoSH

Figure S1. Ablation Study: Monochrome SH. Compared to a
held out frame (a), using higher-order monochrome SH coeffi-
cients (b) improves the sharpness of shadows compared to a model
without them (c).

ing spherical Gaussians [9, 11] typically use a different
parametrization G(p;q, λ, µ) = µeλ(p·q−1). We compare
our method with this formulation of spherical Gaussians
with the remaining parts being identical. While the over-
all results are comparable quantitatively, Fig. S2 shows that
our parameterization better captures sharp eye glints, which
is critical for accurate all-frequency reflections.

(a) GT (b) ours (c) SG [Wang et al.]

Figure S2. Ablation Study: Spherical Gaussian Representa-
tion. Compared to a held out frame (a), our angle-based SG for-
mulation (b) leads to more accurate recovery of eye glints than the
conventional cosine-based SG formulation [9] (c).

Person-specific mesh and non-rigid tracking required?
We train our model with a generic head template as initial-
ization regardless of facial expressions (Fig. S3 (a)). We
also disable the geometry loss Lgeo such that the positions
of Gaussians are only updated through differentiable ren-
dering. In other words, we use only the estimated rigid
headpose and gaze directions as input. Although slightly



worse registration sometimes leads to lack of eye glints and
blurrier extreme facial expressions, the model achieves sur-
prisingly good reconstruction as shown in Fig. S3 (b). This
indicates that our Gaussian-based representation is flexible
enough to register even if the initialization is poor. The
dependency on accurate non-rigid surface tracking can be
optionally removed at the risk of slight quality degradation
(e.g., lack of eye reflections).

(a) initialization (b) learned avatar (d) GT(c) zoom-in

Figure S3. Ablation Study: Only Rigid Tracking. We use a
generic head template as the base mesh regardless of facial ex-
pressions (a). Compared to GT (d), our model with only rigid
head pose tracking and a generic template achieves surprisingly
good reconstruction (b, c).

Effect of the number of cameras. We train our decoder
model with varying numbers of cameras to analyze the sen-
sitivity of the method to capture setup specifics, and show
results of novel view synthesis on a training frame (Fig. S4).
Using as few as 32 cameras seems to yield good results,
with 8 cameras showing noticeably degraded quality, and
16 cameras showing some artifacts, especially in the eyes.
Conversely, using more than 32 cameras yields diminish-
ing returns. We hypothesize that higher capacity modeling
would be required to fully utilize the available data. (Note
also that any rigid head motion present across the training
frames creates additional virtual viewpoints—training on a
single frame would yield much worse results).
Effect of the number of lighting conditions. We train
our decoder model with varying numbers of light condi-
tions and show an unseen light condition on a training frame
(Fig. S5). We note two limitations of this study: (1) because
we use temporal multiplexing, the comparisons use differ-
ent numbers of training frames (as all frames from other
light conditions need to be discarded), and (2) we cannot
hold out physical lights as our light conditions trigger mul-
tiple lights simultaneously. However, the results show that
using even 10% to 20% percent light conditions can yield
acceptable results, potentially again limited by capacity and
learning variance.

(a) 8 cameras (b) 16 Cameras (c) 32 Cameras (d) 149 Cameras

Figure S4. Ablation Study: Number of cameras for decoder
training. We vary the number of cameras used for rendering su-
pervision (a) 8 cameras, (b) 16 cameras, (c) 32 cameras, (d) the
full 149 cameras. We show results of novel view generation on a
training frame.

(a) 10+1 Light Conditions (b) 30+1 (c) 120+1 (d) 360+1 (f) GT Image(e) 577+1 (Training Sample)

Figure S5. Ablation Study: Number of light conditions used in
training.. We vary the number of light conditions used for render-
ing supervision (a) 10+1 (10 partial illuminations and 1 uniform
illumination), (b) 30+1, (c) 120+1, (d) 360+1, (e) the full set of
illuminations (including the test sample), and (f) the ground truth
image. We show results on held out illuminations for a training
frame and camera.

D. Performance

For all identities, we use 1024×1024 = 1 Mi Gaussians for
the evaluation and results on the paper, and 512×512 =
256 Ki Gaussians for the VR demo shown in the video.
We observe that increasing the number of Gaussians leads
to quality improvement at the cost of slower decoding and
rendering. The 10242 model takes 12.84 ms for splatting,
and the 5122 model takes 6.40 ms for splatting on NVIDIA
A100. We use 5122 for the VR demo to improve the fram-
erate. We do not apply any pruning of Gaussians. Tab. S2
shows the inference time of each method. All Gaussian-
based models including ours converge within 3 days and
MVP-based models require twice as many 032 iterations
(400 K) for convergence.



Table S2. Performance of each method.

Geometry Appearance Inference (ms)

A Ours w/ EEM EyeNeRF [4] 35
B Ours 31

C
Ours

EyeNeRF [4] 20
D Linear [10] 6
E Ours 18

F
MVP [6]

EyeNeRF [4] 43
G Linear [10] 6
H Ours 34

E. Ethical Concerns

Our model is only applied to a few consenting subjects cap-
tured in a dense multiview capture system. In addition, the
expression latent space is personalized for each individual
to capture subtle expressions. These effectively limit the use
case to driving ones’ own avatars only with their consent.
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