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1. Theoretical Analysis and Results

1.1. Notation

We will be using the same notation as sec. 3 in the main paper. We review this notation for the convenience of the reader.

We consider a depth L neural network with layer widths {n1, . . . , nL}. We let X ∈ RN×n0 denote the training data, with
n0 being the dimension of the input and N being the number of training samples. We let Y ∈ RN×nL denote the training
labels. The output at layer k will be denoted by Fk and is defined by

Fk =


FL−1WL + bL, k = L

ϕ(Fk−1Wk + bk), k ∈ [L− 1]

X, k = 0

(1.1)

where the weights Wk ∈ Rnk−1×nk and the biases bk ∈ Rnk and ϕ is an activation applied component wise. The notation
[m] is defined by [m] = {1, . . . ,m}. For a weight matrix Wk at layer k, the notation W 0

k will denote the initialization of
that weight matrix. These are the initial weights of the network before training begins under a gradient descent algorithm. In
general, we will denote the whole neural network by F . A neural field is any such network that parameterizes a continuous
field.

All networks will be trained with the standard Mean Square Error (MSE) loss defined by

L(θ) = 1

2
||FL(θ)− Y ||2F (1.2)

where θ denotes the parameters of the network FL i.e. the weights and biases.

For the activation ϕ we will be primarily focused on the following functions:

1. Gaussian activations [2, 15, 18]: e−x
2/ω2

where ω > 0 is a fixed hyperparameter. The square of this hyperparameter is the
variance of the Gaussian i.e. how wide the Gaussian is.

2. Sine activations [19]: sin(ωx) where ω > 0 is a fixed hyperparameter, which gives the frequency of the sine function.
3. Sinc activations [16]: sinc(ωx) := sin(ωx)

ωx for x ̸= 0 and 1 for x = 0.
4. Wavelet [17]: eiω0xe−x

2/ω2
1 , where i denotes the complex imaginary number, ω0 > 0 is a frequency hyperparameter and

ω2
1 > 0 is a variance hyperparameter. Observe that this activation is complex valued, hence when dealing with real-valued
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signals we will always take the real part of the associated output of the neural network. In fact we will always deal with
real-valued signals and hence will never need to consider the imaginary part. Note sometimes this wavelet is explicitly
called the Gabor wavelet. When the context is clear we shall just call this activation the wavelet activation.

5. ReLU: This is the Rectified Linear Unit that is commonly used throughout all of machine learning.

For this section we will generally assume the frequency and variance parameters are fixed. In the experiments sections, sec.
2 and 3, we will choose these parameters by runnnin sweeps and picking the best values.

When we employ a ReLU activation we will primarily do so with a positional embedding layer (PE), which is simply an
embedding of the data into a higher dimensional space. The reader who is unfamiliar with PE should consult the standard
references [10, 20]. A ReLU -networks that employs a positional embedding layer will be denoted by ReLU − PE.

We will also need the following complexity notations: O(·), Θ(·) and Ω(·). We recall that f(x) = O(g(x)) if there exists
constants C > 0 and x0 > 0 such that f(x) ≤ Cg(x) for all x ≥ x0. We have that f(x) = Ω(g(x)) if the reverse inequality
to to big O is true. Namely, that there exists constants C > 0 and x0 > 0 such that 0 ≤ Cg(x) ≤ f(x) for all x ≥ x0.
Finally, we remind that reader that f(x) = Θ(g(x)) if f(x) satisfies both sides of the inequality, that is f(x) = O(g(x)) and
f(x) = Ω(g(x)).

Finally, we use the notation w.h.p to denote with high probability and the notation w.p. to denote with probability/.

1.2. Conditions for the convergence of gradient descent

In this section we will prove a preliminary result that will be integral to the proofs of the main theorems in sec. 4 of the main
paper. F will denote a fixed network of depth L as given by (1.1). When we want to emphasize that the network is of depth
L, we will denote the network by FL. We will denote the gradient descent updates by

θk+1 = θk − η∇kL(θk) (1.3)

and let F kl = Fl(θk), where θk denotes the parameters at iteration k of the gradient descent update. When context clearly
implies the iteration step, we shall simply write Fl and forget the k-superscript. Furthermore, when we want to talk about the
weight matrices at a particular gradient descent iteration k, we will denote them by (W k

l )
L
l=1. Thus superscripts will always

denote the iteration step of the gradient descent algorithm.

In this section, we will assume the activation ϕ satisfies the following two inequalities

|ϕ(x)| ≤ A and |ϕ′(x)| ≤ B. (1.4)

Example 1.1. Examples of activation functions satisfying eqns. (1.4) are sine, Gaussian, sinc, wavelet, tanh and sigmoid.

Example 1.2. Examples of activation functions not satisfying eqns. (1.4) are ReLU, GeLU and SiLU.

The following lemma bounds the kth-layer feature matrix for 0 ≤ k ≤ L− 1 in terms of a bound on the activation, the width
of the layer and the number of samples.

Lemma 1.3. Let ϕ be an activation function such that |ϕ| ≤ A. Then for 0 ≤ k ≤ L− 1, we have that

||Fk||2 ≤ ||Fk||F ≤
√
AnkN

Proof. For a give matrix the 2-norm || · ||
2

is given by the maximum singular value of the matrix, which is always bounded
above by the Frobenius norm. To obtain the bound on the Frobenius norm, observe that each entry of Fk is given by
(Fk)ij = ϕ((WkFk−1)ij), since the activation function act component wise. In particular, each entry of Fk is bounded above
by A. Since there are a total of nkN entries the result follows.

The following lemma provides a bound on the gradient of the loss.

Lemma 1.4. For θ = (Wp)
L
p=1 and k ∈ [L] we have

||∇
Wk

L(θ)||
F

≤ BL−(k+1)
√
Ank−1N

L∏
p=k+1

||Wp||2 ||FL − Y ||2

where we remind the reader that N is the number of training samples.



Proof. The lemma is proved using the formula

V ec

(
∇

Wk
L(θ)

)
=

(
FL(θ)− Y

) L∏
p=k+1

(
Wp ⊗ IN

)
Dp−1 · Inl

⊗ Fk−1,

where V ec denotes the vectorization operator. See [11] for a derivation of the formula.

We then estimate

||∇
Wk

L(θ)||
F
= ||V ec

(
∇

Wk
L(θ)

)
||2

=

∣∣∣∣∣∣∣∣(FL(θ)− Y
) L∏
p=k+1

(
Wp ⊗ IN

)
Dp−1 · Inl

⊗ Fk−1

∣∣∣∣∣∣∣∣
2

≤ BL−(k+1)||FL(θ)− Y ||2 ||Fk−1||2
L∏

p=k+1

||Wp||2

≤ BL−(k+1)
√
Ank−1N

L∏
p=k+1

||Wp||2 ||FL(θ)− Y ||
2

where the last inequality comes from applying lemma 1.3.

The following lemma bounds the difference of a feature matrix at two different iteration points, along gradient descent.

Lemma 1.5. Let θa ∈ (W a
l )
L
l=1, θa ∈ (W b

l )
L
l=1 and choose numbers λl ≥ max{||W a

l ||2 , ||W b
l ||2}. Then for any k ∈ [L] we

have

||Fk(θa)− Fk(θb)||F

≤ Bk||X||
F

( k∏
j=1

λj

)
||W a

1 −W b
1 ||F

+

k∑
i=2

Bk−(i−1)
√
Ani−1N

( k∏
j=1

λj

)
||W a

i −W b
i ||F

Proof. The proof proceeds via induction. We start by proving the base k = 1 case

||F a1 − F b1 ||F = ||σ(W a
1X)− σ(W b

1X)||
F

≤ B||X||
F
||W a

1 −W b
1 ||F .

Assume the statement for k − 1, we then prove it for k:

||F ak − F bk ||F = ||σ(W a
k F

a
k−1)− σ(W b

kF
b
k−1)||F

≤ B||W a
k F

a
k−1 −W b

kF
b
k−1||F

≤ B||W a
k F

a
k−1 −W a

k F
b
k−1 +W a

k F
b
k−1 −W b

kF
b
k−1||F

≤ B
(
||W a

k F
a
k−1 −W a

k F
b
k−1||F + ||W a

k F
b
k−1 −W b

kF
b
k−1||F

)
≤ B

(
||W a

k ||2 ||F ak−1 − F bk−1||F + ||F bk−1||2 ||W a
k −W b

k ||F
)

≤ B||W a
k ||2 ||F ak−1 − F bk−1||F +B

√
Ank−1N ||W a

k −W b
k ||F

where the last inequality follows from applying lemma 1.3. Applying the induction hypothesis to the ||F ak−1 −F bk−1||F term
proves the lemma.



We now prove a theorem that gives conditions under which gradient descent converges to a global minimum. It will be used
to prove the main theorems in sec. 4 of the main paper by showing that under certain initializations the conditions of the
theorem are satisfied, thus allowing use to deduce that such initializations lead to convergence to a global minimum.

Theorem 1.6. Fix a deep neural network F given by (1.1), having activation function ϕ satisfying (1.4) and such that
nL−1 ≥ N . Let (Cl)Ll=1 be any fixed sequence of positive numbers and let

σ0 = σmin(F
0
L−1), λl = ||W 0

l ||2 + Cl, λi→j =

j∏
l=i

λl, (1.5)

where σmin denotes the minimum singular value. Assume that the following inequalities are satisfied at initialisation:

σ2
0 ≥ 16

√
2L(θ)(B)L−2A

(
maxl∈[L]{λl+1→L}

minl∈[L]{Cl}

)
(1.6)

σ3
0 ≥ 32

√
2L(θ0)

(
B

2L−2||X||
F
(
√
An0N)λ2→L

L−1∏
j=1

λj +

L−1∑
i=2

B
2(L−i)−1

(Ani−1N)λi+1→L

L−1∏
j=i+1

λj

)
(1.7)

σ2
0 ≥ 8λL

(
B

2L||X||
F

√
AnoN(λ1)(λ2→L−1)

2 +

L−1∑
i=2

B
2L
(Ani−1N)(λi+1→L−1)

2

)
λL (1.8)

where B = max{1, B} and A = maxl∈[L]{
√
AnlN}.

Assume that the learning rate satisfies

η < min

{
4

σ2
0

, (λL)−3

(
B2L||X||

F

√
AnoN(λ1)(λ2→L−1)

2 +

L∑
i=2

B2L(Ani−1N)(λi+1→L−1)
2

)−1}
. (1.9)

Then for any k ≥ 0 we have that

L(θt) ≤
(
1− η

σ2
0

4

)k
L(θ0) (1.10)

implying that the loss function L converges to a global minimum under gradient descent.

Proof. We will prove that for every k ≥ 0 the following conditions are satisfied:

||W t
l ||2 ≤ λl, l ∈ [L], t ∈ [0, k], (1.11)
1

2
σ0 ≤ σmin(F

t
L−1), t ∈ [0, k], (1.12)

L(θt) ≤
(
1− η

σ2
0

8

)t
L(θ0), t ∈ [0, k]. (1.13)

The proof will proceed via induction with the base k = 0 being clear. Therefore, assume that the three conditions hold for
iteration k. We will prove they hold for iteration k+1. Applying the triangle inequality and using the gradient decent update,



we have

||W k+1
l −W 0

l ||F

≤
k∑
s=0

||W s+1
l −W s

l ||F

= η

k∑
s=0

||∇Wl
L(θs)||F

≤ η

k∑
s=0

BL−(l+1)
√
Anl−1N

L∏
p=l+1

||W s
p ||2 ||F sL − Y ||

2

≤ ηBL−(l+1)
√
Anl−1N

k∑
s=0

λl+1→L||F sL − Y ||2

≤ ηBL−(l+1)
√
Anl−1N(λl+1→L) ·

k∑
s=0

(
1− η

σ2
0

8

)s/2
||F 0

L − Y ||
F

where the second inequality follows from lemma 1.4, and the final inequality from the induction assumption. Let u =(
1− η

σ2
0

8

)1/2
. The above right term can then be bounded by

ηBL−(l+1)
√
Anl−1N(λl+1→L)

k∑
s=0

us||F 0
L − Y ||

F

≤ 8

σ2
0

BL−(l+1)
√
Anl−1N(λl+1→L) · (1− u2)

(1− uk+1)

1− u
||F 0

L − Y ||
F

≤ 16

σ2
0

BL−(l+1)
√
Anl−1N(λl+1→L)||F 0

L − Y ||
F

(1.14)

≤ Cl, by (1.6)

where we used that 0 < u < 1 to get the second inequality. Using the fact that the operator norm is bounded above by the
Frobenius norm and an application of Weyl’s inequality gives

||W k+1
l ||

2
≤ ||W 0

l ||2 + Cl = λl (1.15)

and thus condition (1.11) has been proved for k + 1.

We move on to prove condition (1.12). We have

||F k+1
L−1 − F 0

L−1||F

≤ BL||X||
F

( L−1∏
j=1

λj

)
||W k+1

1 −W 0
1 ||F +

L−1∑
i=0

B(L−1)−(i−1)
√
Anl−1N

( L−1∏
j=i+1

λj

)
· ||W k+1

i −W 0
i ||F

≤
[(

16

σ2
0

)
B2L−2||X||

F

(√
An0N

)( L−1∏
j=1

λj

)
λ2→L +

L−1∑
i=0

B2(L−i)−1
√
Ani−1N

( L−1∏
j=i+1

λj

)(
λi+1→L

)]√
L(θ0)

≤ 1

2
σ0, by (1.7)

where the first inequality follows from lemma 1.5 and the second by applying (1.14). This establishes condition (1.13) for
k + 1. The final step is to prove (1.13).

Define the matrix G = F kL−1W
k+1
L . A simple computation shows

2L(θk+1) = ||F k+1
L (θ)− Y ||2

F

= 2L(θk) + ||F k+1
L − F kL||2F + 2Tr(F k+1

L − F kL)(F
k
L − Y )T

= 2L(θk) + ||F k+1
L − F kL||2F + 2Tr(F k+1

L −G)(F kL − Y )T + 2Tr(G− F kL)(F
k
L − Y )T .



The strategy now is to bound each term on the right separately, put them together and obtain a bound for the left hand side of
the above inequality. Using lemmas 1.4 and 1.5, we have

||F k+1
L − F kL||F ≤ BL||X||

F

( L∏
j=1

λj

)
||W k+1

l −W k
l ||F +

L∑
i=2

BL−(i−1)
(√

Ani−1N
)( L∏

j=i+1

λj

)
||W k+1

i −W k
i ||F

≤ η

[
B2L−2||X||

F

(√
An0N

)
λ1→Lλ2→L +

L∑
i=2

B2(L−i)(Ani−1N)
(
λi+1

)2]||F kL − Y ||
F
.

We then observe that by applying lemma 1.5 and (1.15) we get

Tr(F k+1
L −G)(F kL − Y )T = Tr(W k+1

L F k+1
L−1 −W k+1

L F kL−1)(F
k
L − Y )T

≤ ||F k+1
L−1 − F kL−1||F ||W k+1

L ||2 ||F kL − Y ||
F

≤ η

[
B2(L−1)||X||

F

(√
An0N

)
λ1→L−1λ2→L−1 +

L−1∑
i=2

B2(L−1−i)(Ani−1N)
(
λi+1→L−1

)2]
· λL||F kL − Y ||2

F
.

The final step is to estimate the term Tr(G− F kL)(F
k
L − Y )T :

Tr(G− F kL)(F
k
L − Y )T = −ηTr

(
(F kL−1)

T (F kL−1)(F
k
L − Y )T (F kL − Y )

)
≤ −ησmin(F

k
L−1)

2||F kL − Y ||2
F

≤ −ησ
2
0

4
||F kL − Y ||2

F

where we used the fact that
∇WL

L(θk) = (F kL−1)
T (F kL − Y ),

our assumption that nL−1 ≥ N to obtain λmin((F
k
L−1)

T (F kL−1)) = σmin(F
k
L−1)

2, and the induction hypothesis for k giving,
σmin(F

k
L−1) ≥ 1

2σ0.

We can now form an estimate for L(θk+1) that will prove condition (1.13). We define two terms

T1 =

[
B

2L||X||
F

(√
An0N

)
(λ1)(λ2→L−1)

2 +

L∑
i=2

B
2L
(Ani−1N)

(
λi+1→L−1

)2]
(λL)

2

T2 =

[
B

2L||X||
F

(√
An0N

)
(λ1)(λ2→L−1)

2 +

L−1∑
i=2

B
2L
(Ani−1N)

(
λi+1→L−1

)2]
λL

and note that condition (1.13) says precisely that σ2
0 ≥ 8T2. Using this we obtain

L(θk+1) ≤
(
1− η

σ2
0

2
+ 2ηT2

)
L(θk)

≤
(
1− η

σ2
0

4

)
L(θk).

Finally, the assumption (1.9) on η finishes the induction proof.

The above theorem gives three conditions that need to be satisfied for the gradient descent algorithm to converge for the MSE
loss function of a neural network F admitting an activation function ϕ that satisfies eqns. (1.4). In particular these three
conditions can be used to check if a neural network admitting one of the groups of activation functions given in exmp. 1.1.



1.3. Do the inequalities (1.6)-(1.8) from theorem 1.6 actually hold?

The purpose of this subsection is to show that there are many regions in parameter space where conditions (1.6)-(1.8) hold.
Theorem 2.2 then guarantees that if a network is initialised at such points of parameter space, then with a small enough
learning rate, gradient decent will converge to a global minimum.

Set Cl = 1 for l ∈ [L]. Initialise the weights θ0 = W 0
1 , . . . ,W

0
L−1,W

0
L so that σmin(FL−1(θ0)) > 0 and W 0

L = 0. This
latter condition implies

√
2L(θ0) = ||Y ||

F
. Let θ0(r) = (rW 0

1 , . . . , rW
0
L−1, 0) be an r dependent parameter.

Condition (1.6) for θ0(r) reads

σ0(θ0(r))
2 ≥ 16

√
2L(θ)(B)LA

(
max
l∈[L]

{λl→L(θ0(r)}
)
. (1.16)

The term

λl→L(θ0(r)) =

L−1∏
k=l

(
r||W 0

l ||+ 1
)

is a polynomial of degree at most L−1 in r. Furthermore, since σ0(θ0(r)) = σmin(FL−1(θ0(r)) it follows that σ0(θ0(r))2 =
r2(L−1)σ2

0 . We thus see that the left hand side of inequality (1.16) is a polynomial of degree 2(L− 1) in r and the right hand
side is a polynomial of degree at most L − 1 in r. It thus follows that for r sufficiently large (1.16) holds. We can analyse
condition (1.7) in a similar way. Substituting θ0(r) into (1.7), gives the following inequality for r

r3(L−1)

32
≥

√
2L(θ0)

(
r2L−3B

2L−2||X||
F
(
√
An0N)λ2→Lλ1→L−1 +

L−1∑
i=2

r2(L−1−i)B
2(L−i)−1

(Ani−1N)λi+1→L

L−1∏
j=1

λj

)
.

The term on the left is a degree 3(L− 1) polynomial in r and the term on the right has degree at most 2L− 3. This shows the
above inequality can be satisfied for r sufficiently large. A similar analysis for equation (1.8) shows that it too can be satisfied
for r sufficiently large. In particular, we see that the last hidden layer need only have width N and provided the network is
initialised at such a point, with r sufficiently large, thm. 1.6 guarantees convergence to a global minimum, for a small enough
learning rate. The above argument also shows there are parameters for which conditions (1.6)-(1.8) will not hold. Thus we
see that initialisation is crucial to being able to apply thm. 1.6.

1.4. Preliminary lemmas on norms of the feature matrices: Part 1

In this section we will obtain some important norm bounds on the feature matrices of a neural network F as defined in (1.1).
The results of this section are only valid for the following four activations:

1. Gaussian
2. sine
3. sinc
4. wavelet

see sec. 1.1 for their definition. Since the wavelet activation is given by eiω0xe−x
2/ω2

1 and hence |eiω0xe−x
2/ω2

1 | = e−x
2/ω2

1 ,
we find that the same proof for the Gaussian activation works for the wavelet activation. Furthermore, since the norm of the
sinc activation is bounded above by 1 for |x| ≤ 1 and by sin(x) for |x| > 1, we find that the same proof that is given for
the sine activation allows goes through for the sinc activation. Therefore, we will primarily focus on the sine and Gaussian
activations for this section.

We will need to make use of the sub-exponential and sub-Gaussian norms, which we now describe. Given a sub-exponential
random variable X , define

||X||ψ1
= inf{t > 0 : E[exp(|X|/t)] ≤ 2}.

Given a sub-Gaussian random variable X define the sub-Gaussian norm

||X||ψ2 = inf{t > 0 : E[exp(|X2|/t2)] ≤ 2}.

Lemma 1.7. Let ϕ be the activation given by sin(ωx). Then ||ϕ(Xw)||ψ2 = O(||X||
F
).



Proof. We need to look at the integral ∫
Rn0

exp

( ||ϕ(Xw)||2
2

t2

)
exp

(
−||w||2

β2
dw

)
. (1.17)

Observe that |sin(ωx)| ≤ ω|x|. We can then bound the integral in the following way∫
Rn0

exp

( ||ϕ(Xw)||2
2

t2

)
exp

(
−||w||2

β2
dw

)
≤

∫
Rn0

exp

(
ω2 ||X||2

F
||w||2

2

t2

)
exp

(
−||w||2

β2
dw

)
.

Let t2 = m||X||2Fβ for some m > 0 to be chosen later.

Then we get that the above can be written as∫
Rn0

exp

(
||w||22
mβ2

)
exp

(
||w||2

β2

)
dw =

∫
Rn0

exp

(
−
(
1− 1

m

)
||w||2

β2

)
dw

≤
(

m

m− 1

)n0
2

βn0

< 2, for m large.

The lemma follows.

Lemma 1.8. Let ϕ be the activation given by exp(−x2/ω2). Then ||ϕ(Xw)||ψ2
= O(||X||

F
) w.p 1.

Proof. We need to look at the integral ∫
Rn0

exp

( ||ϕ(Xw)||2
2

t2

)
exp

(
−||w||2

β2
dw

)
. (1.18)

Choose ϵ > 0 so that | exp(−x2/ω2)| ≤ d(ϵ)|x|, where d(ϵ) > 0, on R\(−ϵ, ϵ). Define χ(ϵ) = {w ∈ Rn0 : Xw ∈
[−ϵ, ϵ]N}, i.e. χ(ϵ) denotes the set of those vectors that are mapped into a small cube about the origin in RN by X , viewed
as a matrix.

We then compute the integral in the following way.∫
Rn0

exp

( ||ϕ(Xw)||2
2

t2

)
exp

(
−||w||2

β2
dw

)
=

∫
Rn0\χ(ϵ)

exp

( ||ϕ(Xw)||2
2

t2

)
exp

(
−||w||2

β2
dw

)
+

∫
χ(ϵ)

exp

( ||ϕ(Xw)||2
2

t2

)
exp

(
−||w||2

β2
dw

)
.

The first integral can be bounded above by 2 taking t2 = m||X||2Fβ and applying the same argument as in lemma 1.7. The
second integral can be estimated as follows∫

χ(ϵ)

exp

( ||ϕ(Xw)||2
2

t2

)
exp

(
−||w||2

β2
dw

)
≤

∫
χ(ϵ)

exp

(
Nn0

t2

)
exp

(
−||w||2

β2
dw

)
= exp

(
Nn0

t2

)∫
χ(ϵ)

exp

(
−||w||2

β2

)
dw

≤ exp

(
Nn0
t2

)∫
χ(ϵ)

dw

→ exp

(
Nn0
t2

)∫
χ(0)

dw

= 0, w.h.p

Note that χ(0) = Ker(X) which has measure 0 in Rn0 w.p 1. The lemma follows.



Proposition 1.9. Let δ > 0, then σ2
0 ≥ n1λ

4 w.p 1− δ if if n1 = Ω̃(N/λ), where λ = λmin(G) and

G = Ew∼N (0,β2
1)

(
ϕ(Xw)ϕ(Xw)T

)
(1.19)

Proof. Let A ∈ RN×n1 be a random Gaussian matrix such that A:j = ϕ(XW:j)1||ϕ(XW:j)||2≤t, where 1||ϕ(XW:j)||2≤t

denotes a characteristic function and t = ||X||F max{1, log 2||X||2
F

λ }, where we define λ shortly. Let

G = Ew∼N (0,β2
1)

(
ϕ(Xw)ϕ(Xw)T

)
G∗ = Ew∼N (0,β2

1)

(
ϕ(Xw)ϕ(Xw)T 1||ϕ(XW )||

2
≤t

)
.

Then λmin(FkFTk ) ≥ λmin(AA
T ) and λmax(A:jA

T
:j) ≤ t2. We can then apply the matrix Chernoff inequality, see theorem

1.1 [21], to obtain that for any ϵ ∈ [0, 1)

P(λmin(AAT ) ≤ (1− ϵ)λmin(EAAT )) ≤ N

(
e−ϵ

(1− ϵ)1−ϵ

)λmin(EAAT )/t2

. (1.20)

Taking ϵ = 1/2, we find

P
(
λmin(AA

T ) ≤ n1λmin(G
∗)/2

)
≤ exp(−cn1λmin(G

∗)/t2 + Log(N)) (1.21)

Thus for n1 ≥ t2

cλmin(G∗)Log(N/δ) we have λmin(AA
T ) ≥ n1λmin(G

∗)
2 w.p ≥ 1− δ.

We then find

||G∗ −G||2 ≤ E
(
ϕ(XW )ϕ(XW )T 1||ϕ(XW )||2≤t − ϕ(XW )ϕ(XW )T ||2

)
= E

(
||ϕ(XW )||2

2
1||ϕ(XW )||

2
>t

)
=

∫ ∞

s=0

P
(
||ϕ(XW )||2

2
1||ϕ(XW )||2>t >

√
s

)
ds

=

∫ ∞

s=0

P
(
||ϕ(XW )||2

2
> t

)
P
(
||ϕ(XW )||2

2
>

√
s

)
ds

≤
∫ ∞

s=0

exp(−c t2 + s

||ϕ(XW )||2ψ2

)ds

≤
∫ ∞

s=0

exp

(
− c

t2 + s

C||X||2
F

)
ds

≤ λ

2

where the second inequality uses lemmas 1.7, 1.8.

It follows that λmin(G
∗) ≥ λ/2. Therefore, taking n1 ≥ max{N, 2t

2

cλ Log
N
δ }, it holds w.p 1− δ that

σmin(F1)
2 = λmin(F1F

T
1 ) ≥ λmin(AA

T ) ≥ n1λmin(G
∗)/2 ≥ n1λ

4
.

Lemma 1.10. Suppose ϕ is an activation function that satisfies |ϕ| ≤ A. For l ∈ [L], let (Wl)ij ∼ N (0, Cβ ). Then we have

E||Fl||2F ≤
√
CAnlN√

β



Proof. E||Fl||2F = E||ϕ(WlFl−1)||2F ≤ AnlNE1 =
√
CAnlN√

β
.

Lemma 1.11. Suppose ϕ is a C1-differentiable function satisfying |ϕ| ≤ A and |ϕ′| ≤ B. Then w.p 1 − Lexp(−t2/2B2)
over (Wl)

L
l=1 ∼ N (0, 1/nl−1) we have

||FL||F ≤
√
AnLN

n
1/4
L−1

+

√
AnL−1N

n
1/4
L−2n

1/2
L−1

t+

√
AnL−2N

n
1/4
L−3n

1/2
L−2n

1/2
L−3

t2 + · · ·+
√
An1N

n
1/4
0 n

1/2
1 · · ·n1/2L−1

tL−1 ||X||F
n
1/2
0 . . . n

1/2
L−2n

1/2
L−1

tL

Proof. The proof is by induction over l ∈ [L]. We first prove the base l = 1 case. We note that each feature map Fl is
Lipshitz from the assumptions on ϕ. Since W1 is Gaussian distributed, we can apply Gaussian concentration, see [22], to
obtain

||F1||F − E||F1||F ∼ subG

( ||X||2
F
B2

n0

)
which implies

P
(∣∣||F1||F − E||F1||F ≤ ||X||

F√
n0

t

)
≤ 1− 2exp(−t2/2B2).

We therefore have that

||F1||F ≤ E||F1||F +
||X||F√
n0

t

≤
√
An1N

n
1/4
0

+
||X||

F√
n0

t

where we have used lemma 1.10 to bound the expectation term.

We now assume the lemma is true for l − 1, that is w.p ≥ 1− (l − 1)exp(−t2/2B2) we have that

||FL−1||F ≤
√
AnL−1N

n
1/4
L−2

+

√
AnL−2N

n
1/4
L−3n

1/2
L−2

t+ · · ·+ ||X||F
n
1/2
0 . . . n

1/2
L−2n

1/2
L−2

tL−1.

Conditioning on (Wp)
l−1
p=1 we have that Fl is Lipshitz and hence

||Fl−1||F − E||Fl−1||F ∼ subG

( ||Fl−1||2FB
2

nl−1

)
implying

||Fl||F ≤ E||Fl||F +
||Fl−1||F√

nl−1
t

w.p ≥ 1− exp(−t2/2B2) over Wl. The result then follows by applying the induction hypothesis and lemma 1.10.

In the case of a Sinusoidal activation, we can prove much better bounds than lemmas 1.10, 1.11.

The proof of the following lemma follows from lemma C.3 in [13] by observing that |sin(ωx)| ≤ ω|x|.

Lemma 1.12. Let ϕ = sin(ωx) and for each l ∈ L let (Wl)ij ∼ N (0, βl) for every l ∈ [L]. Then for each l ∈ [L] we have
that E||Fl||2F ≤ ω2βlnlE||Fl−1||2F .

Lemma 1.13. Let ϕ = sin(ωx) and for each l ∈ L let (Wl)ij ∼ N (0, βl) for every l ∈ [L]. Fix some t > 0 and assume that√
nl ≥ t for all l ∈ [L]. Then

||FL||F ≤
L∏
l=1

√
nlβl−1 + L

( L−1∏
l=1

√
nlβl

)
β0||X||

F
t

w.p ≥ 1− Lexp(−t2/2).

The proof of the above lemma follows in a similar way to lemma 1.11 using lemma 1.12.



1.5. Preliminary lemmas on norms of the feature matrices: Part 2

1.5.1 Preliminaries on Hermite polynomials and expansions

In this section we analyse the Hermite representations of the functions sin(ωx) and e−
x2

ω2 . As in sec. 1.4 we will focus on the
case of sine and Gaussian as these results can then easily be extended to the case of sinc and wavelet. These representations

will then be used to establish an estimate on the quantity λmin(G), where G = Ew∼N (0,β2
1)

(
ϕ(Xw)ϕ(Xw)T

)
.

We start with some background on Hermite expansions. We will consider the space L2(R, e
−x2/2
√
2π

) of weighted L2 functions
with inner product given by

⟨f, g⟩ =
∫
R
f(x)g(x)

e−x
2/2

√
2π

dx. (1.22)

In other words, the vector space consists of equivalence classes of Lebesgue measurable functions on R that have finite
weighted norm, given by equation (1.22).

The vector space L2(R, e
−x2/2
√
2π

) forms a Hilbert space with the above inner product. A well known orthonormal basis for this
Hilbert space is given by the Hermite polynomials

hn(x) =
1√
n!
(−1)nex

2/2 d
n

dxn
e−x

2/2 (1.23)

for each n ≥ 0.

Therefore, any function f ∈ L2(R, e
−x2/2
√
2π

) can be represented as an expansion of the form

f =

∞∑
n=0

anhn (1.24)

where

an :=

∫
R
f(x)hn(x)

e−x
2/2

√
2π

dx. (1.25)

The expansion given in (1.24) is known as the Hermite expansion of f . The above equation (1.24) is to be understood in the

sense that the right hand side converges to the left hand side with respect to the norm of L2(R, e
−x2/2
√
2π

). Note that equation

(1.24) implies that f ∈ L2(R, e
−x2/2
√
2π

) if and only if ⟨f, f⟩ =
∑∞
n=0 a

2
n <∞.

The Hermite polynomials satisfy various properties that are important in their analysis. We list a few that will be important
for our analysis of Sinusoidal and Gaussian activated networks.

The first fact we will need is the value of the Hermite polynomials at zero, which follows from a simple computation using
(1.23).

Lemma 1.14.

hn(0) =

{
0, if n = 2k + 1

(−1)k(2k − 1)!!, if n = 2k
(1.26)

where !! denotes the double factorial notation.

Lemma 1.15. dk

dxk hn(x) = n(n− 1) · · · (n− (k − 1))hn−k(x).

The above lemma is follows from differentiating formula (1.23).

Another well know basis for the weighted space L2(R, e
−x2/2
√
2π

) are given by the monomials {xn}n≥0. The following lemma
shows how to express the Hermite polynomials in the monomials basis.

Lemma 1.16. hn(x) =
∑n
k=0

(
n
k

)
hn−k(0)x

k.



The proof of the above lemma follows from the following obeservations. The Hermite polynomials are analytic functions
about zero. Hence one can expand them in a Taylor series about zero, then applying lemma 1.15 gives the coefficients of the
Taylor expansion leading to the formula in lemma 1.16.

Lemma 1.17. ∫
R
hn(λx)e

−x2/2dx =

{
(2k − 1)!!

√
2π(λ2k + (−1)k), if n = 2k, (k ≥ 0)

0, if n = 2k + 1, (k ≥ 0)
(1.27)

Proof. By using formula (1.23) it’s easy to see that when n is odd, the integrand is an odd function hence the above integral
is zero. For the even case, n = 2k, we proceed as follows. Using lemma 1.16 we have∫

R
hn(λx)e

−x2/2dx =

2k∑
i=0

(
2k

i

)
h2k−i(0)λ

i

∫
R
xie−x

2/2dx.

We then observe that h2k−i(0) = 0 if 2k − i is odd and h2k−i(0) ̸= 0 is 2k − i is even. Write 2k − i = 2j, then the above
integral becomes

2k∑
i=0

(
2k

i

)
h2k−i(0)λ

i

∫
R
xie−x

2/2dx =

k∑
j=0

(
2k

i

)
h2j(0)λ

2k−2j

∫
R
x2k−2je−x

2/2dx

=

k∑
j=0

(
2k

2k − 2j

)
(−1)j(2j − 1)!!λ2k−2j

∫
R
x2k−2je−x

2/2dx

=

k∑
j=0

(
2k

2k − 2j

)
(−1)j(2j − 1)!!(2k − 2j − 1)!!

√
2π

= (2k − 1)!!(λ2k)
√
2π + (−1)k(2k − 1)!!

√
2π

= (2k − 1)!!
√
2π(λ2k + (−1)k)

where we used lemma 1.14 to get the second inequality.

1.5.2 Hermite Expansions

In this section we work out the Hermite expansion, see (1.24), of the functions sin(ωx) and e−x
2/ω2

.

Lemma 1.18. We have the following formulas∫ ∞

−∞
(cos(ωx))

e−x
2

√
2π
dx = e−ω

2/2

∫ ∞

−∞
(sin(ωx))

e−x
2

√
2π
dx = 0

Proof. The function sin(ωx)) e
−x2

√
2π

is an odd function, hence its integral over (−∞,∞) must be zero.



To prove the first integral formula, we compute as follows∫ ∞

−∞
(cos(ωx))

e−x
2

√
2π
dx+ i

∫ ∞

−∞
(sin(ωx))

e−x
2

√
2π
dx =

1√
2π

∫ ∞

−∞
e−x

2/2(cos(ωx) + isin(ωx))dx

=
1√
2π

∫ ∞

−∞
e−x

2/2eiωxdx

=
1√
2π

∫ ∞

−∞
e−x

2/2−iωxdx

=
1√
2π

∫ ∞

−∞
e−(x/

√
2−iω/

√
2)2−ω2/2dx

=
e−ω

2/2

√
2π

∫ ∞

−∞
e−(x/

√
2−iω/

√
2)2dx.

By applying the change of variable t = x√
2
− iω√

2
, dt = dx√

2
we obtain

e−ω
2/2

√
2π

∫ ∞

−∞
e−(x/

√
2−iω/

√
2)2dx =

e−ω
2/2

√
2π

∫ ∞

∞
e−t

2√
2dt

= e−ω
2/2.

Lemma 1.19. Let n ≥ 0 be an integer written in the form n = 4k + l, with k ≥ 0 and 0 ≤ l < 4. Let an denote the nth
Hermite coefficient of the function sin(ωx). We have that

an =


0, if l = 0
2ωn

√
n!2π

e−ω
2/2, if l = 1

0, if l = 2

− 2ωn
√
n!2π

e−ω
2/2, if l = 3

(1.28)

Proof. Using (1.25), we see that the Hermite coefficients of sin(ωx) are given by

an =

∫ ∞

−∞

1√
n!
(−1)nsin(ωx)e−x

2/2 d
n

dxn
(e−x

2/2)
e−x

2/2

√
2π

dx

=
1√
n!
(−1)n

1√
2π

∫ ∞

∞
sin(ωx)

dn

dxn
(e−x

2/2)dx

=
1√
n!
(−1)n

1√
2π

(−1)n
∫ ∞

−∞

dn

dxn
(sin(ωx))e−x

2/2dx

where the last inequality follows by integration by parts n times, using the fact that the function sin(ωx) d
n

dxn (e
−x2/2)d decays

out at +∞ and −∞, so the boundary components are zero.

Writing n = 4k + l, with k ≥ 0 and 0 ≤ l < 4, we have that

dn

dxn
(sin(ωx)) =


ωnsin(ωx), if l = 0

ωncos(ωx), if l = 1

−ωnsin(ωx), if l = 2

−ωncos(ωx), if l = 3

(1.29)



By lemma 1.18, we then see that

an =


0, if l = 0
2ωn

√
n!2π

e−ω
2/2, if l = 1

0, if l = 2

− 2ωn
√
n!2π

e−ω
2/2, if l = 3

(1.30)

We now move on to computing the Hermite expansion of a Gaussian function e−x
2/ω2

.

Lemma 1.20. The Hermite coefficients an of the function e−x
2/ω2

are given by

an =


0, if n = 2k + 1

(−1)2k
(√

2
ω

)2m(
ω√

2+ω2
(2m− 1)!!

√
2π

)((
2

2+ω2

)k
+ (−1)k

)
, if n = 2k.

From (1.25), we have that

an =

∫
R
e−x

2/ω2

hn(x)e
−x2/2dx

= (−1)n
∫
R
e−x

2/ω2 dn

dxn
(e−x

2/2)dx

=

∫
R

(
dn

dxn
(e−x

2/ω2

)

)
e−x

2/2dx, on integrating by parts n times.

We then observe that hn
(√

2x
ω

)
= (−1)n 1√

n!

(
ω√
2

)n
ex

2/ω2 dn

dxn (e
−x2/ω2

). Substituting this into the above we obtain

an = (−1)n
1√
n!

(
ω√
2

)n ∫
R
hn

(√
2x

ω

)
e−x

2/ω2

e−x
2/2dx

= (−1)n
1√
n!

(
ω√
2

)n ∫
R
hn

(√
2x

ω

)
e−

(
2+ω2

2ω2

)
x2

dx.

Using the substitution y =

(
2+ω2

ω2

)1/2

x, with dy =

(
2+ω2

ω2

)1/2

dx, we have that

(−1)n
1√
n!

(
ω√
2

)n ∫
R
hn

(√
2x

ω

)
e−

(
2+ω2

2ω2

)
x2

dx = (−1)n
1√
n!

(
ω√
2

)n ∫
R
hn

( √
2ω

ω
√
2 + ω2

y

)
e−y

2/2 ω√
2 + ω2

dy

= (−1)n
1√
n!

(
ω√
2

)n
ω√

2 + ω2

∫
R
hn

( √
2√

2 + ω2
y

)
dy.

This latter integral can be computed using lemma 1.17. We thus obtain

an =


0, if n = 2k + 1

(−1)2k
(√

2
ω

)2m(
ω√

2+ω2
(2m− 1)!!

√
2π

)((
2

2+ω2

)k
+ (−1)k

)
, if n = 2k.

We will need the following lemma, see lemma D.3 in [13].



Lemma 1.21. Let X = [x1, . . . , xN ]T inRN×d where ||xi||2 =
√
d for 1 ≤ i ≤ N . Let

G = Ew∼N (0, 1d Id)

(
ϕ(Xw)ϕ(Xw)T

)
,

where ϕ(x) is either sin(ωx) or e−x
2/ω2

. Let an denote the nth coefficient of the Hermite expansion of ϕ. Then

G =

∞∑
n=0

a2n
dn

(
XXT

)◦n (1.31)

where ◦n denotes the n-fold Hadamard product, and the “=” is to be interpreted as uniform convergence.

The proof of the following lemma follows from lemma 3.4 in [13] on noting that sin(ωx), e−x
2/ω2 ∈ L2(R, e

−x2/2
√
2π

).

Lemma 1.22. Let X ∈ RN×d be random sub-Gaussian matrix whose rows are i.i.d sub-Gaussian vectors with ||Xi:||2 =√
n0 and ||Xi:||ψ2

≤ c for all 1 ≤ i ≤ N , where c > 0 is some constant independent of n0. Fix an integer k ≥ 2, then if
N ≤ dk, we have P(σmin(X∗k) ≥ dk/2

2 ) ≥ 1− 2N2e−c1dN
−2/k

, where c1 > 0, where ϕ(x) = sin(ωx) or e−x
2/ω2

.

We now prove the following theorem that computes a lower bound on λmin(G), whereG = Ew∼N (0,β2
1)

(
ϕ(Xw)ϕ(Xw)T

)
.

This theorem was originally proved for non-linearities satisfying |ϕ(x)| ≤ |x| in [13], see theorem 3.3. Our proof will follow
their proof using lemmas 1.19, 1.20.

Theorem 1.23. Let X satisfy the same data assumptions as in lemma 1.22. Let ϕ denote one of the activations sin(ωx) or

e−x
2/ω2

with an denoting the Hermite coefficients in a Hermite expansion of ϕ. Let G = Ew∼N (0,β2
1)

(
ϕ(Xw)ϕ(Xw)T

)
.

Fix an integer n ≥ 2. Then for N ≤ dk,

P
(
λmin(G) ≥

a2n
8

)
≥ 1− 2N2e−c1N

4/5k

)
.

In other words λmin(G) = Ω(1) w.p. ≥ 1− 2N2e−c1N
4/5k.

Proof. By lemmas 1.19, 1.20 we have that the coefficient an of the Hermite expansion of sin(ωx) is non-zero for n ≡
1 or 3mod(4) and is non-zero for n ≡ 0 or mod(2) for e−x

2/ω2

. In particular, in both cases we can find n ≥ 10k such that
an ̸= 0. Applying lemma 1.22, we see that for N ≤ dn

λmin((XX
T )◦n) = σ2

min(X
∗n) ≥ dn

4
(1.32)

w.p. ≥ 1− 2N2e−c1dN
−2/n ≥ 1− 2N2e−c1N

4/5k, using the fact that N ≤ dn and n ≥ 10k.

Using lemma 1.21 we see that we can write

G =

∞∑
n=0

a2n
dn

(
XXT

)◦n
. (1.33)

If we let Sm =
∑m
i=0

a2i
di (XX

T )◦i denote the mth partial sum then we see by (1.33) that there exists m ≥ n such that

||G− Sm||
F
≤ a2n

2dn
λmin((XX

T )◦n).

As λmin(Sm) ≥ λmin(Sn) ≥ a2n
dn λmin((XX

T )◦n). Thus on an application of Weyl’s inequality, we get

λmin(G) ≥ λmin(Sm)−
(
a2n
2dn

λmin((XX
T )◦n)

)
≥ a2n

2dn
λmin((XX

T )◦n ≥ a2n
8
> 0

w.p. ≥ 1− 2N2e−c1N
4/5k, where the third inequality follows by applying (1.32).



1.6. Proofs of theorems in sec. 4 of the main paper

1.6.1 Proofs of thms. 4.2 and 4.4 from the main paper

In this section we want to give the proofs of thms. 4.2, 4.4 from the main paper. The proofs of thms. 4.7, 4.9 from the main
paper will easily follow from the proofs of these results.

We will start by giving the proof of the thm. 4.2 from the main paper which is a result about shallow networks i.e. networks
with 1 hidden layer.

We will be making the following standard assumptions. (i) the data samples X will all be sub-gaussian random vectors
with ||Xi||2 ≤ 1 and ||Xi||ψ2

= O(1), for the definition of the norm || · ||ψ2
please see sec. 1.4, (ii) the labels Y satisfy

||Yi||2 = O(1) for all i ∈ [N ]. Furthermore, the final output width n2 will be fixed and not varied

The approach taken to prove the main theorems of sec. 4 of the main paper is to show that the conditions (1.6)-(1.8) are
satisfied.

Proof of thm. 4.2 from the main paper. Taking C1 = C2 = 1, equations (1.6)-(1.8) are

σ2
0 ≥ 16(max{

√
An0N,

√
An1N}λ2

√
2L(θ0) (1.34)

σ3
0 ≥ 32B

2||X||F
√
An0Nλ1λ2

√
2L(θ0) (1.35)

σ2
0 ≥ 8B

4||X||F
√
An0Nλ1λ2 (1.36)

Recall that W 0
1 ∈ Rn0×n1 and W 0

2 ∈ Rn1×n2 . Since our last layer width n2 is fixed, Theorem 2.13 of [4] implies w.p
≥ 1− e−Ω(n1)

λ1 = O
(
1
)
, λ2 = O

(√
n2√
n1

)
. (1.37)

By proposition 1.9, given any δ > 0 we have that w.p ≥ 1− δ that

σ0 ≥
(
n1λ

4

)1/2

(1.38)

if n1 ≥ Ω̃(Nλ ), where
λ = λmin

(
Ew∼N (0,(ω

√
n1)−1I√n0)

[ϕ(wX)ϕ(wX)T ]
)
.

Furthermore, we have that √
2L(θ0) = O

(√
N
)

which follows from lemma 1.11. Finally, using lemma 1.23 we have that λ ≥ Ω(1). Thus we find that equations (1.34)-(1.36)
are satisfied if n1 = Ω(N3/2). It follows by thm. 1.6 that gradient descent converges to a global minimum for a small enough
learning rate, and the proof is complete.

Remark 1.24. The statement of the thm. 4.2 in the main paper was stated for the activations Gaussian, sine and sinc and
not wavelet. The reason for this was that the wavelet activation was a complex valued activate give by eiω0xe−x

2/ω2
1 , where

i denotes the complex imaginary number. However, note that the absolute value of this activation is given by the Gaussian
term: e−x

2/ω2
1 and hence it is easy to see that it satisfies (1.4). Therefore, the above proof goes through with no issues for

this activation as well.

Remark 1.25. The proof was given for the LeCun’s normal initialization however the same proof also goes through for the
Kaiming normal [7] and Xavier normal [6] initializations.

We now move on to proving thm. 4.4 from the main paper. In order to do this we will impose the same conditions we did in
the above proof of thm. 4.2 from the main paper. Furthermore, we will also assume σ0(Fk−1)

2 = Ω(nL−1) w.h.p. This has
been proven for ReLU networks, see theorem 5.1 in [12], and for shallow Gaussian, sine, sinc, wavelet activated networks,
see lems. 1.23 in sec. 1.5.2



Proof of thm. 4.4 from the main paper. The goal is to show that inequalities (1.6)-(1.8) hold.

Using the notation of theorem 1.6, we set Cl = 1 for all l ∈ [L]. Applying theorem 2.13 from [4] and theorem 4.4.5 of [22],
we find that

λL = O(

√
nL√
nL−1

) (1.39)

λL−1 = O(

√
nL−1 +

√
nL−2√

nL−2
) (1.40)

λl = O(1), for l ∈ [2, L− 2] (1.41)

λ1 = O(
max{

√
m,

√
n0}√

n0
). (1.42)

We check inequality (1.6). We need to show that the following inequality holds

σ2
0 ≥ 16B

L−2√
AnL−1N(λL−1)(λL)

√
2L(θ0).

Applying the asymptotics (1.39), (1.40) and the fact that
√

2L(θ0) = O(
√
N), see lemma 1.11, we see that the left hand

side of the above inequality has order O(N
√
nL−1). From our assumption on σ0, and the assumptions on the width of the

network in the statement of thm. 4.4 from the main paper, we see that the above inequality holds. We move on to checking
inequality (1.7). We need to show that

σ3
0 ≥ 32

√
2L(θ0)

(
B

2L−2||X||
F
(
√
An0N)λ2→L

L−1∏
j=1

λj +

L−1∑
i=2

B
2(L−i)−1

(Ani−1N)λi+1→L

L−1∏
j=i+1

λj

)
.. (1.43)

Using the asymptotics (1.39)-(1.42) we see that the left hand side of the above inequality has order O(N
√
nL−1). Using our

assumption that nL−1 = Ω(N5/2) and the assumption on σ0, we see that that the inequality 1.43 is satisfied.

A similar analysis shows that (1.8) is satisfied, and the proof of the theorem is complete.

As in rmk. 1.24 the above proof can be easily made to work for the wavelet activation function.

Remark 1.26. The proof was given for the LeCun’s normal initialization however the same proof also goes through for the
Kaiming normal [7] and Xavier normal [6] initializations.

1.6.2 Proofs of thms. 4.7 and 4.9 from the main paper

We observe that in the previous section, the proof of thm. 4.2 and thm. 4.4 in the main paper involved using the random
matrix theory of matrices with entries from a normal distribution.

In the shallow case we by using theorem 2.13 of [4] we were able to obtain the complexity equality

λL = O(

√
nL√
nL−1

) (1.44)

when we initialized the final layer with weights randomly chosen for a normal distribution of the form N (0, 1/nL−1). We
now observe that if we initialize the final layer weights using the distribution N (0, 1/npL−1) for p ≥ 1. Then applying
theorem 2.13 of [4] gives

λL = O
(√

nL

n
p/2
L−1

)
. (1.45)

If we then go through the proof of thm. 4.2 of the main paper given in the previous section we see that the conditions
(1.6)-(1.8) are easier to satisfy. This is the premise of the proofs of thm. 4.7 and thm. 4.9 from the paper.



Proof of thm. 4.7 from the main paper. Taking C1 = C2 = 1, equations (1.6)-(1.8) are

σ2
0 ≥ 16(max{

√
An0N,

√
An1N}λ2

√
2L(θ0) (1.46)

σ3
0 ≥ 32B

2||X||F
√
An0Nλ1λ2

√
2L(θ0) (1.47)

σ2
0 ≥ 8B

4||X||F
√
An0Nλ1λ2. (1.48)

Applying theorem 2.13 of [4] we obtain w.p ≥ 1− e−Ω(n1)

λ1 = O
(
1
)
, λ2 = O

( √
n2

n13/4

)
. (1.49)

By proposition 1.9, given any δ > 0 we have that w.p ≥ 1− δ that

σ0 ≥
(
n1λ

4

)1/2

(1.50)

if n1 ≥ Ω(Nλ ), where
λ = λmin

(
Ew∼N (0,(ω

√
n1)−1I√n0)

[ϕ(wX)ϕ(wX)T ]
)
.

Furthermore, we have that √
2L(θ0) = O

(√
N
)

which follows from lemma 1.11. Finally, using lemma 1.23 we have that λ ≥ Ω(1). Thus we find that equations (1.34)-(1.36)
are satisfied if n1 = Ω(N). It follows by thm. 1.6 that gradient descent converges to a global minimum for a small enough
learning rate, and the proof is complete.

Proof of thm. 4.9 from the main paper. The proof follows the approach taken in the above proof. The starting point is to
note that the goal is to show that inequalities (1.6)-(1.8) hold.

Using the notation of theorem 1.6, we set Cl = 1 for all l ∈ [L]. Applying theorem 2.13 from [4] and theorem 4.4.5 of [22],
we find that

λL = O(

√
nL

n
3/4
L−1

) (1.51)

λL−1 = O(

√
nL−1 +

√
nL−2√

nL−2
) (1.52)

λl = O(1), for l ∈ [2, L− 2] (1.53)

λ1 = O(
max{

√
m,

√
n0}√

n0
). (1.54)

The proof then follows in exactly the same way as in the proof of thm. 4.4 from the main paper shown in sec. 1.6.2.

As in rmk. 1.24 the above proof can be easily made to work for the wavelet activation function.

1.7. Learning rate

The statements of thms. 4.2., 4.4., 4.7, 4.9 from the main paper included the condition that the learning rate had to be small
enough. A natural question that arises is how small the learning rate has to be and whether we are able to obtain any useful
bounds for the learning rate.

We observed from secs. 1.6.1 and 1.6.2 that the main ingredient to the proofs of thms. 4.2., 4.4., 4.7, 4.9 from the main paper
was to establish the inequalities (1.6)-(1.8) from thm. 1.6. Going back to thm. 1.6 we see that the learning rate must satisfy
the following inequality:

η < min

{
4

σ2
0

, (λL)−3

(
B2L||X||

F

√
AnoN(λ1)(λ2→L−1)

2 +

L∑
i=2

B2L(Ani−1N)(λi+1→L−1)
2

)−1}
. (1.55)



While it is hard to work with this bound due to the second term in the brackets we do see that that the learning rate depends
on the various quantities associated to the training of the network, such as the norm of the data set X , the operators norm of
the initial weight matrices and the minimum singular value of the output of the final hidden layer. Using (1.55) we can obtain
the bound

η ≤ 4

σ2
0

. (1.56)

If we then apply proposition 1.9, given any δ > 0 we have that w.p ≥ 1− δ that

σ0 ≥
(
n1λ

4

)1/2

. (1.57)

Substituting this back into (1.56) we obtain

η ≤ C

n1
, (1.58)

where C > 0 is a constant that is independent of the widths of the network. We thus see that the learning rate must be
bounded above by the inverse of the width. This implies that for very large widths, the learning rate will have to be extremely
small. However, in practise we find that one can take much bigger learning rates. This is a limitation of the theory in that it
requires very small learning rates. This is however common amongst theoretical works establishing convergence for gradient
descent.

1.8. Extending the theory to Adam

So far all the theory we have talked about, including the statements of thms. 4.2, 4.4, 4.7 and 4.9 from the main paper,
has been for gradient descent. However, in the area of Neural Fields the more common optimizer that is used is the Adam
optimizer. In this section, we will briefly show how to extend the theory to the case of the Adam optimizer. The reader who
is not familiar with the Adam optimizer is kindly asked to consult the original reference [8].

The Adam optimizer involves two main terms. The first one is a first moment estimate given by

mt = β1mt−1 + (1− β1)gt (1.59)

where gt denotes the gradient at iteration t and β1 is a moving average parameter that is usually taken to be 0.9. The second
one is a second moment estimate given by:

vt = β2vt−1 + (1− β2)g
2
t (1.60)

where β2 is another parameter that is usually fixed at 0.999.

These moment estimates then undergo a bias corrected normalization leading to

m̂t =
mt

(1− β1)t
and v̂t =

vt
(1− β2)t

. (1.61)

Finally, if we denote the weights at iteration t by Wt. Then the Adam optimizer update is given by

Wt =Wt−1 −
η√
v̂t + ϵ

m̂t (1.62)

where ϵ > 0 is a stability factor so that the algorithm doesn’t encounter a division by zero.

We now observe that as is we take more and more iterates of the algorithm the quantity 1
||
√
v̂t+ϵ||

must be bounded by some

uniform constant C > 0. This is because as t→ ∞ if vt → 0 then 1
||
√
v̂t+ϵ||

will always be bounded above 2
ϵ . If on the other

vt → ∞ then 1
||
√
v̂t+ϵ||

is bounded above by 1. We thus see that we always have that the quantity 1
||
√
v̂t+ϵ||

must be bounded
during all the steps of the algorithm by a uniform constant.

We now go back to the proof of thm. 1.6. The main part of this proof was to establish a bound on the difference∑k
s=0 ||W

s+1
l − W s

l ||F . This was done by using the gradient descent update step and then appealing to lem. 1.4. The



difference now is that we have to use the Adam update (1.62). From what we said about the term 1
||
√
v̂t+ϵ||

always being

bounded by a constant c > 0. We can then estimate the sum
∑k
s=0 ||W

s+1
l −W s

l ||F as follows:

k∑
s=0

||W s+1
l −W s

l ||F ≤ Cη

k∑
s=0

||m̂t||F (1.63)

≤ CC̃1(β1)η

k∑
s=0

||mt||F (1.64)

≤ CC̃1(β1)C̃2(β2)

k∑
s=0

||∇Wl
L||F (1.65)

where C̃1(β1) and C̃2(β1) are constants that depend on β1.

We thus see that the proof of thm. 1.6 goes through though now the inequalities (1.6)-(1.8) will involve constants on the right
handside that depend on β1. However, the proofs of thms. 4.2, 4.4, 4.7, 4.9 from the main paper, given in secs. 1.6.1 and
1.6.2, were all based on complexity estimates. Thus an extra constant depending on β1 on the right hand side of inequalities
(1.6)-(1.8) will not affect the complexity bounds that were used and hence thms. 4.2, 4.4, 4.7, 4.9 go through for the Adam
optimizer when training with full batch.

2. Experiments: Applications of Neural Fields to Vision

2.1. Hardware and Software

All experiments were run on a Nvidia RTX A6000 GPU. Furthermore, all the experiments were coded in PyTorch version
2.0.1.

Hyperparameters: Each of the activation functions Gaussian, sine, sinc and wavelet all had an extra hyperparameter which
consisted of either a frequency component or a variance component or as in the case of a wavelet both. So as to obtain the
best results for our experiments and to compare with results in the literature we ran sweeps for each of these parameters
and have picked the best ones. Our values conincide with those from the literature. We list these parameters for the sake of
completeness:

1. For Gaussian activations we found the best variance to be 0.12. This fits with what was found in [2, 15, 18].
2. For a sinc activation we found the best frequency to be 8, which fits with [16].
3. For a sine activation we found that a frequency between 20 − 30 performed best with in general 30 leading to slightly

higher PSNR values for images. This also fits with [19] where it is suggested that anywhere between 10− 30 should work
well.

4. For the wavelet activation we found the best frequency to be 10 and the variance to be 0.052 which fits what was found in
[17].

Optimizers: We will only use two optimizers throughout all experiments. Namely, Gradient Descent (GD) and Adam. We
did a sweep for the learning rate and found 1e-2 for GD to work best and 1e-4 to work best for Adam. Note that we kept
these learning rates fixed through all experiments so as to yield fair results that could be compared.

2.2. Initializations we will be using

In total we will be experimenting with various initializations in the experiments. We will first outline the normal initializations
we will be using:

Normal Initializations:

LeCun Normal Initialization [9]: (W 0
l )ij ∼ N (0, 1/nl−1), for l ∈ [L]. (2.1)



Kaiming Normal Initialization [7]: (W 0
l )ij ∼ N (0, 2/nl−1), for l ∈ [L]. (2.2)

Xavier Normal Initialization [7]: (W 0
l )ij ∼ N (0, 2/(nl + nl−1)), for l ∈ [L]. (2.3)

Initialization 1 (ours): (W 0
l )ij ∼ N (0, 1/nl−1) for l ∈ [L− 1]. and (W 0

L)ij ∼ N (0, 2/(n
3/2
l−1)). (2.4)

For details on the motivation of initialization 1 please see sec. 4.4 of the main paper.

For the image regression experiments we will also compare with the following initializations as the founders of these initial-
izations proved gradient descent converges to a global minimum when initialized with on of these.

Du et al. Initialization [5]: (W 0
l )ij ∼ N (0, 1), for l ∈ [L]. (2.5)

Arora et al. Initialization [1]: (W 0
l )ij ∼ N (0, 1/4), for l ∈ [L]. (2.6)

Arora et al. [1] proved their gradient convergence theorem for any for initializations of the form N (0, κ2) where 0 < κ < 1.
We decided to simply pick a value of κ that trained reasonably and thus went with 1/4.

For all the above normal initializations the biases are initialized to zero.
Remark 2.1. In our initialization 1, we note that there is a 2 in the numerator of the standard deviation of the final layer normal
distribution we are sampling the final layer weights from. The reader may be wondering why the factor of 2? The theory
developed so far is really a complexity theory, detailing how quantities should scale. This means the theory in general can
only predict outcomes upto a constant. We thus introduced the 2 as we found it slightly trained better than if we were to have
a 1 there. However, even if we were to use a 1 in the numerator we still found it did much better than existing initializations
within the literature.

Uniform Initializations: We will also be experimenting with uniform initializations:

LeCun Uniform: (W 0
l )ij ∼ U(−1/

√
nl−1, 1/

√
nl−1), for l ∈ [L]. Biases are initialized to zero . (2.7)

Kaiming Uniform: (W 0
l )ij ∼ U(−1/

√
nl−1, 1/

√
nl−1) (2.8)

b0l ∼ U(−1/
√
nl−1, 1/

√
nl−1), for l ∈ [L]. (2.9)

Xavier Uniform: (W 0
l )ij ∼ U(−

√
6/
√
nl−1 + nl,

√
6/
√
nl−1 + nl) (2.10)

b0l ∼ U(−1/
√
nl−1 + nl, 1/

√
nl−1 + nl), for l ∈ [L]. (2.11)

Initialization 2 (ours): (W 0
l )ij ∼ U(−1/

√
nl−1, 1/

√
nl−1) for l ̸= L. (2.12)

(W 0
L)ij ∼ U(−1/(n

3/4
l−1), 1/(n

3/4
l−1)). (2.13)

For our above initialization 2 we found that initializing the biases to zero worked well. Otherwise the following initialization
for the biases also worked well:

Initialization 2 for biases: b0l ∼ U(−1/
√
nl−1, 1/

√
nl−1) for l ̸= L. (2.14)

b0L ∼ U(−1/(n
3/4
l−1), 1/(n

3/4
l−1)). (2.15)

Finally we will also need to compare our initialization for a sine activation with the principled scheme obtained in Sitzmann
et al. [19] for SIRENs. One of the key ideas we want to show here is how effective our initialization is in that it can also
be used as a simple way to adjust an already practical initialization scheme. Thus we retain everything the original SIREN
initialization scheme does except that we simply sample from a smaller variance uniform distribution on the final layer.



Figure 1. Left; Results from initializing four sinc activated networks with different initializations and trained with gradient descent on
various data sample sizes till the networks reach a PSNR of 50dB. As the number of samples go up the networks initialized with LeCun,
Kaiming, Xavier Normal initializations all need much more width scaling faster than N3/2. While the one initialized with initialization 1
needs much less, scaling like 6N . Right; The same experiment as the left though now we measure total parameters of the network and
look at ReLU-PE networks. In this case we see that the ReLU-PE network scaled faster than N2. We thus see that in both experiments
initialization 1 with a sinc activated network is far more parameter efficient.

Initialization for SIREN’s:

Initialization 3 (ours): (W 0
l )ij ∼ U(−

√
6/(

√
nl−1ω),

√
6/(

√
nl−1ω)) for l ̸= L. (2.16)

(W 0
L)ij ∼ U(−

√
6/(n

3/4
l−1ω),

√
6/(n

3/4
l−1ω)) (2.17)

where ω denotes the frequency of the sine activation. For this initialization all biases will be initialized to zero.

We will be comparing this initialization 3 to the initialization in [19] which we shall simply call the SIREN intialization.

2.3. Testing The Theory

Shallow networks: We performed a 1-dimensional curve fitting experiment on the function f(x) = sin(2πx)+sin(6πx)+
sin(10πx). We systematically sampled the curve at intervals of 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 points, creating 10
datasets of varying sizes for our training data.

In the first experiment we wanted to compare how much width is needed in the hidden layer for the network to achieve a
PSNR of 50dB when trained with gradient descent on each of the datasets above. We compared four networks each admitting
a sinc activation with frequency 8 such that each one was initialized with Kaiming Normal, LeCun Normal, Xavier Normal
and Initialization 1 (see sec. 2.2). Thm. 4.2 from the main paper predicts that as the number of samples increase the width
of the network should scale super-linearly when initializaed with Kaiming Normal, LeCun Normal, Xavier Normal and thm.
4.7 predicts the network should scale linearly when initialized with initialization 1. To test this, we plotted two curves, namely
the function y = N3/2 and the function y = 6N . Fig. 1 (left) shows the result of the experiments. We observe that the sinc
network initialized with our initialization 1 needs much less width and roughly scales according to 6N . Furthmore, we see
that the other 3 initialized networks need much more width and scale greater than N3/2. This verifies that there is merit in
thms. 4.2 and 4.7 from the main paper. Observe that we did not include ReLU-PE in this experiment as the input dimension
of a ReLU-PE layer would change due to the positional embedding layer, therefore the comparison wouldn’t be fair.

The experiment was repeated though now we counted the total number of parameters needed for the network to converge to
a PSNR of 50dB. In this case, we could include a ReLU-PE network trained on various initializations. As can be seen by fig.
1 (right) initialization 1 scales the slowest with respect to data size, making it much more efficient in term of parameters for
gradient descent to converge to a high PSNR value.



Figure 2. A 181× 213× 3 peppers image used for the image experiments in sec. 2.3 and 2.4.

Deep networks: For the case of deep networks we ran a similar experiment to the above shallow networks except that this
time we used an image regression task. In this case we took a moderately difficult image, namely a Peppers Image, see fig 2,
which is a 181 × 213 × 3 image. We then sampled 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 points via a uniform
distribution creating a total of 10 datasets of varying size. Similar to the shallow experiment above we then considered four
sinc deep network, each with 2 hidden layers, and initialized with LeCun, Kaiming, Xavier Normal and initialization 1.
We trained these networks till they converged to a PSNR of 50dB under gradient descent only allowing an increase in the
final hidden layer width. Thm. 4.4 from the main paper predicts that the networks employing the LeCun, Kaiming, Xavier
Normal initializations should all scale super-quadratically with the number of samples, and thm. 4.9 from the main paper
predicts the one initialized with initialization 1 should scale quadratically. We found that the functions y = (1/4000)N5/2

was a good predictor for the amount of width needed by the sinc networks initialized by LeCun, Kaiming, Xavier Normal
and the function y = (1/290)N2 was a good predictor for the amount of width needed for the sinc network initialized with
initialization 1. Fig. 3 (left) shows the results of this experiment.

We then tested the experiment on total number of parameters and included ReLU-PE into the mix. In this case the ReLu-PE
scaled cubically with respect to the data size, showing that it is an extremely parameter inefficient activation. Fig. 3 (right)
shows the results of that experiment.

The above experiment was repeated with a four hidden layer deep network. In this setting we sampled 200, 400, 600, 800,
1000, 1200, 1400, 1600, 1800, 2000 points via Gaussian distribution centred at the centre of the image. In this case too we
found that thm. 4.4 and thm. 4.9 predictions were accurate. Fig. 4 shows the results of this experiment.

We thus see from these experiments that the sinc networks that were initialized with initialization 1, see sec. 2.2, were much
more parameter efficient for gradient descent to converge to a high PSNR.

2.4. Image Reconstruction

Image reconstruction is the following problem: Given pixel coordinates x ∈ R2, we aim to optimize the network f to regress
the associated RGB values c ∈ R3.

We will consider two images for this take both sampled fully. We will use the peppers image 2 as well as a slightly more
complicated Lion image as shown in fig. 5.



Figure 3. Left; Results from initializing four sinc activated networks with different initializations and trained with gradient descent on
various image data sample sizes till the networks reach a PSNR of 50dB. As the number of samples go up the networks initialized with
LeCun, Kaiming, Xavier Normal initializations all need much more width scaling faster than (1/4000)N5/2. While the one initialized
with initialization 1 needs much less, scaling like (1/290)N2. Right; The same experiment as the left though now we measure total
parameters of the network and look at ReLU-PE networks. In this case we see that the ReLU-PE network scaled faster than (1/690)N3.
We thus see that in both experiments initialization 1 with a sinc activated network is far more parameter efficient.
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Analysis of normal initializations for ReLU-PEAnalysis of normal initializations for sinc

Figure 4. Left; Results from initializing four sinc activated networks with different initializations and trained with gradient descent on
various image data sample sizes till the networks reach a PSNR of 50dB. As the number of samples go up the networks initialized with
LeCun, Kaiming, Xavier Normal initializations all need much more parameter scaling faster than (1/1700)N5/2. While the one initialized
with initialization 1 needs much less, scaling like (1/50)N2. Right; The same experiment as the left though now we measure total
parameters of the network and look at ReLU-PE networks. In this case we see that the ReLU-PE networks scaled like (1/63)N3. We thus
see that in both experiments initialization 1 with a sinc activated network is far more parameter efficient.

Gradient Descent: For the gradient descent experiments we looked at 6 normal initializations given by the 6 in sec. 2.2.
We then also compared the 4 uniform initializations given in sec. 2.2. We used a fixed 4 hidden layer network with each
layer having 128 neurons, with a sinc activation with frequency 8. Each network was trained with full batch gradient descent
comprising of a total of 38553 points sampled from the Peppers image, see fig. 2. Each network was trained for 20000
epochs. Fig. 6 shows the result. It is clear from this figure that both initialization 1 and 2 perform the best, shwoing that



Figure 5. A 512× 512× 3 Lion image for image reconstruction experiments, see sec. 2.4

when parameters are all kept the same these two initializations outperform standard initializations in the literature.

Adam: We decided to also test image reconstruction using the Adam optimizer. For this experiment we used the Lion
image, see fig. 5, with a total 150000 sample points, sampled via a Gaussian distribution centred at the origin. We trained
4 sinc networks with the 4 initializations, initialization 1, LeCun Normal, Kaiming Normal and Xavier Normal. We also
trained another 4 with the corresponding uniform initializations. All networks had 4 hidden layers and 128 neurons and were
trained for 20000 epochs. Fig. 7 shows that in both cases the initializations 1 and 2 completely outperform the others. This
validates the generalization of the main theory to the Adam setting carried out in sec. 1.8.

Comparing with SIRENs initialization: We compared initialization 3 against the principle initialization scheme of Sitz-
mann et al. in [19]. We ran two sine activated network, each with 4 hidden layers, 128 neurons, and the frequency of the sine
function set at 30. We then trained both networks on the Peppers image using gradient descent and Adam. Fig. 8 shows that
in both cases our initialization 3 outperforms the SIREN initialization by at least 2-3 dB in PSNR. This highlights the ease of
our initialization in that it can easily be dropped into many practical initialization schemes.

We ran the above experiment on the Lion instance as well, this time with 150000 samples. We kept everything else the same
as in the above experiment on the Peppers image. Fig. 9 shows that in both cases our initialization 3 is able to obtain 2-3 dB
higher value in PSNR.

2.5. Computed Tomography (CT) Reconstruction

CT reconstruction is an example of an underconstrained reconstruction problem. We will follow the strategy used in [17] and
consider 100 CT measurements of a 256× 256 X-ray colorectal image [3].

For this experiment we employed a wavelet activation, see sec. 2.1 for details on the frequency and variance of the wavelet.
The goal of this experiment was to test our initialization 1 and 2, see sec. 2.2, against LeCun, Kaiming and Xaiver Normal
initializations and against LeCun, Kaiming and Xavier Uniform initializations as these are the most commonly used initial-
izations for neural field applications. In this experiment we kept all parameters the same. Thus all networks employed the
same wavelet activation, and had 2 hidden layers each of 300 neurons. The input dimension of the networks was 2 and
the output dimension was 1. We used a dataset size of 141810 datapoints and we used the Adam optimizer with full batch
training for this task.

We ran two separate experiments. In the first experiment we compared the four normal initializations scheme; LeCun Normal,
Kaiming Normal, Xaiver Normal and initialization 1. We then ran a second experiment where we compared LeCun Uniform,
Kaiming Uniform, Xaiver Uniform and initialization 2. Fig. 10 shows the results. For normal initializations, initialization
1 achieved at least a 2.5dB higher PSNR and for the uniform initialization, initialization 2 achieved at least a 0.4dB higher
PSNR. This validates the extension of the theory to the case of the Adam optimizer as shown in sec. 1.8.



Figure 6. Left; Six sinc networks trained with 6 different normal initializations (shown in the legend) on the Peppers image. Initialization
1 achieves at least 2 dB higher than the others. Left; Six sinc networks trained with 4 different uniform initializations (shown in the legend)
on the Peppers image. Initialization 2 achieves at least 1.3 dB higher than the others.

Figure 7. Left; Four sinc networks trained with four different normal initializations (shown in the legend) on the Lion image. Initialization
1 achieves at least 5 dB higher than the others. Left; Four sinc networks trained with 4 different uniform initializations (shown in the
legend) on the Lion image. Initialization 2 achieves at least 3 dB higher than the others.

2.6. Occupancy Fields

In sec. 5.3 of the main paper we have the results of the occupancy field experiments. Due to space constraints we could not
put the reconstructed meshes of each initialization into the main paper. Fig. 11 we show all 8 reconstructions of the meshes
with the IOU on the top right. From the figure it is clear that both initializations 1 and 2 outperform all others.

2.7. Neural Radiance Fields

NeRF is commonly trained using uniform initialization schemes and almost always the Kaiming uniform initialization. We
decided to run 8 NeRF’s, 4 with intialization 1, LeCun Normal, Kaiming Normal, Xavier Normal and another 4 with initial-
ization 2, LeCun Uniform, Kaiming Uniform, Xavier Uniform. We used the Lego instance from the NeRF real synthetic data
set. As fig. 12 shows in both cases initialization 1 and initialization 2 outperform the other initializations. For comparison of
reconstructions for the unseen scenes, see sec. 5.4 of the main paper where we compare the two best reconstructions, namely



Figure 8. Left; Two sine activated networks trained with gradient descent on the Peppers image. Clearly initialization 3 is outperforming
SIRENs initialization. Right; Two sine activated networks trained with Adam on the Peppers image. Clearly initialization 3 is outperform-
ing SIRENs initialization.

Figure 9. Left; Two sine activated networks trained with gradient descent on the Lion image. Clearly initialization 3 is outperforming
SIRENs initialization. Right; Two sine activated networks trained with Adam on the Lion image. Clearly initialization 3 is outperforming
SIRENs initialization.

Kaiming Uniform with Initialization 2.

3. Further Experiments: Applications to physical modelling

In sec. 5.5 of the main paper we gave results on the Navier-Stokes equations using a physics informed neural network (PINN).
For the reader who is unfamiliar with these types of networks, we collect here some basic facts so as to complement sec. 5.5
of the main paper.

We consider PDEs defined on bounded domains Λ ⊆ Rn. To this end, we seek a solution u : Λ → R of the following system

N [u](x) = f(x), x ∈ Λ (3.1)
u(x) = f(x), x ∈ ∂Λ. (3.2)

where N denotes a differential operator. In the setting of time-dependent problems, we will treat the time variable t as an



Figure 10. Left; Comparison of normal initializations for CT reconstruction task. Initialization 1 (ours) reaches a higher PSNR than all
others with a PSNR difference of at least 2.4. Right; Comparison of uniform initializations. Initialization 2 (ours) reaches a higher psnr
compared to all others with at least 0.4 PSNR difference.
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Figure 11. Top; Reconstruction of the mesh for all the normal initializations. Initialization 1 has the highest IOU. Bottom; Reconstruction
of the mesh for all the uniform initializations. Initialization 2 has the highest IOU (zoom in for better viewing).

additional space coordinate and let Λ denote the spatio-temporal domain. In so doing, we are able to treat the initial condition
of a time-dependent problem as special type of Dirichlet boundary condition that can be included in (3.2).

The goal of physics informed neural network theory is to approximate the latent solution u(x) of the above system by a neural
network u(x; θ), where θ denotes the parameters of the network. The PDE residual is defined by r(x; θ) := u(x; θ)− f(x).
The key idea as presented in [14] is that the network parameters can be learned by minimizing the following composite loss



5e2

Figure 12. Left; Four different NeRF’s trained with four different normal initialization schemes. The one trained with initialization 1
reaches at least 0.6dB higher than the others. Right; Four different NeRF’s trained with four different uniform initialization schemes. The
one trained with initialization 2 reaches at least 1.1dB higher than the others.

function
L(θ) = Lb(θ) + Lr(θ) (3.3)

where Lb denotes the boundary loss term and Lr denotes the PDE loss term, defined by

Lb(θ) =
1

2Nb

Nb∑
i=1

|u(xib; θ)− g(xib)|2 and Lr(θ) =
1

2Nr

Nr∑
i=1

|r(xir; θ)|2. (3.4)

Nb and Nr represent the training points for the boundary and PDE residual. Minimizing both loss functions, Lb and Lr,
simultaneously using gradient-based optimization aims to learn parameters θ for an effective approximation, u(x; θ), of the
latent solution, see [14]. For the explicit results and experimental setup please see sec. 5.5 of the main paper.

We consider the 2D incompressible Navier-Stokes equations as considered in [14].

ut + uux + 0.01uy = −px + 0.01(uxx + uyy) (3.5)
vt + uvx + 0.01vy = −py + 0.01(vxx + vyy) (3.6)

where u(x, y, t) denotes the x-component of the velocity field of the fluid, and v(x, y, t) denotes the y-component of the
velocity field. The term p(t, x, y) is the pressure. The domain of the problem is [−15, 25] × [−8, 8] × [0, 20]. We assume
that u = ψy and v = −ψx for some latent function ψ(t, x, y). With this assumption, the solution we seek will be divergence
free, see [14] for details.
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