ZeroNVS: Zero-Shot 360-Degree View Synthesis from a Single Image
SUPPLEMENTARY MATERIAL

A. Details: Diffusion model training
A.1. Model

We train diffusion models for various camera condi-
tioning parameterizations: Mzero—1-to—3, MgDoF+15
M6D0F+1, norm.» M6D0F+1, agg.» and 1v[6DoF+17 viewer-
Our runtime is identical to Zero-1-to-3 [3] as the camera
conditioning novelties we introduce add negligible over-
head and can be done mainly in the dataloader. We train
our main model for 60, 000 steps with batch size 1536. We
find that performance tends to saturate after about 20, 000
steps for all models, though it does not decrease. For in-
ference of the 2D diffusion model, we use 500 DDIM steps
and guidance scale 3.0.

Details for Mgpori1: To embed the field of view f
in radians, we use a 3-dimensional vector consisting of
[f,sin(f),cos(f)]. When concatenated with the 4 x 4 =
16-dimensional relative pose matrix, this gives a 19-
dimensional conditioning vector.

Details for Mgpor+1, viewer: We use the DPT-SwinV2-
256 depth model [5] to infill depth maps from ORB-SLAM
and COLMAP on the ACID, RealEstate10K, and CO3D
datasets. We infill the invalid depth map regions only af-
ter aligning the disparity from the monodepth estimator to
the ground-truth sparse depth map via the optimal scale and
shift following Ranftl et al. [6]. We downsample the depth
map 4x so that the quantile function is evaluated quickly.

At inference time, the value of Qu0(D) may not be
known since input depth map D is unknown. Therefore
there is a question of how to compute the conditioning
embedding at inference time. Values of Qao(D) between
.7 — 1. work for most images and it can be chosen heuristi-
cally. For instance, for DTU we uniformly assume a value
of .7, which seems to work well. Note that any value of
Q20(D) is presumably possible; it is only when this value
is incompatible with the desired SDS camera radius that dis-
tillation may fail, since the cameras may intersect the visible
content.

A.2. Dataloader

One significant engineering component of our work is our
design of a streaming dataloader for multiview data, built
on top of WebDataset [2]. Each dataset is sharded and each
shard consists of a sequential tar archive of scenes. The
shards can be streamed in parallel via multiprocessing. As
a shard is streamed, we yield random pairs of views from
scenes according to a “rate” parameter that determines how
densely to sample each scene. This parameter allows a
trade-off between fully random sampling (lower rate) and
biased sampling (higher rate) which can be tuned accord-
ing to the available network bandwidth. Individual streams
from each dataset are then combined and sampled randomly
to yield the mixture dataset. We will release the code to-
gether with our main code release.

B. Details: NeRF prediction and distillation
B.1. SDS Anchoring

We propose SDS anchoring in order to increase the diversity
of synthesized scenes. We sample 2 anchors at 120 and 240
degrees of azimuth relative to the input camera.

One potential issue with SDS anchoring is that if the
samples are 3D-inconsistent, the resulting generations may
look unusual. Furthermore, traditional SDS already per-
forms quite well except if the criterion is diverse back-
grounds. Therefore, to implement anchoring, we randomly
choose with probability .5 either the input camera and view
or the nearest sampled anchor camera and view as guidance.
If the guidance is an anchor, we “gate” the gradients flowing
back from SDS according to the depth of the NeRF render,
so that only depths above a certain threshold (1.0 in our ex-
periments) receive guidance from the anchors. This seems
to mostly mitigate artifacts from 3D-inconsistency of fore-
ground content, while still allowing for rich backgrounds.
We show video results for SDS anchoring on the webpage.

B.2. Hyperparameters

NeRF distillation via involves numerous hyperparameters
such as for controlling lighting, shading, camera sampling,
number of training steps, training at progressively increas-
ing resolutions, loss weights, density blob initializations,



optimizers, guidance weight, and more. We will share a few
insights about choosing hyperparameters for scenes here,
and release the full configs as part of our code release.

Noise scheduling: We found that ending training with
very low maximum noise levels such as .025 seemed to
benefit results, particularly perceptual metrics like LPIPS.
We additionaly found a significant benefit on 360-degree
scenes such as in the Mip-NeRF 360 dataset to schedul-
ing the noise “anisotropically;” that is, reducing the noise
level more slowly on the opposite end from the input view.
This seems to give the optimization more time to solve the
challenging 180-degree views at higher noise levels before
refining the predictions at low noise levels.

Miscellaneous: Progressive azimuth and elevation sam-
pling following [4] was also found to be very important for
training stability. Training resolution progresses stagewise,
first with batch size 6 at 128x128 and then with batch size 1
at 256 x 256.

C. Experimental setups

For our main results on DTU and Mip-NeRF 360, we train
our model and Zero-1-to-3 for 60, 000 steps. Performance
for our method seems to saturate earlier than for Zero-1-to-
3, which trained for about 100, 000 steps; this may be due to
the larger dataset size. Objaverse, with 800, 000 scenes, is
much larger than the combination of RealEstate 10K, ACID,
and CO3D, which are only about 95, 000 scenes in total.

For the retrained PixelNeRF baseline, we retrained it on
our mixture dataset of CO3D, ACID, and RealEstate10K
for about 560, 000 steps.

C.1. Main results

For all single-image NeRF distillation results, we assume
the camera elevation, field of view, and content scale are
given. These parameters are identical for all DTU scenes
but vary across the Mip-NeRF 360 dataset. For DTU,
we use the standard input views and test split from from
prior work. We select Mip-NeRF 360 input view indices
manually based on two criteria. First, the views are well-
approximated by a 3DoF pose representation in the sense of
geodesic distance between rotations. This is to ensure fair
comparison with Zero-1-to-3, and for compatibility with
Threestudio’s SDS sampling scheme, which also uses 3 de-
grees of freedom. Second, as much of the scene content as
possible must be visible in the view. The exact values of the
input view indices are given in Table 1.

The field of view is obtained via COLMAP. The camera
elevation is set automatically via computing the angle be-
tween the forward axis of the camera and the world’s XY -

plane, after the cameras have been standardized via PCA
following Barron et al. [1].

One challenge is that for both the Mip-NeRF 360
and DTU datasets, the scene scales are not known by
the zero-shot methods, namely Zero-1-to-3, our method,
and our retrained PixelNeRF. Therefore, for the zero-
shot methods, we manually grid search for the optimal
world scale in intervals of .1 to find the appropriate world
scale for each scene in order to align the predictions
to the generated scenes. Between five to nine samples
within [.3, .4,.5,.6,.7,.8,.9,1.,1.1,1.2,1.3, 1.4, 1.5] gen-
erally suffices to find the appropriate scale. Even correcting
for the scale misalignment issue in this way, the zero-shot
methods generally do worse on pixel-aligned metrics like
SSIM and PSNR compared with methods that have been
fine-tuned on DTU.

C.2. User study

We conduct a user study on the seven Mip-NeRF 360
scenes, comparing our method with and without SDS an-
choring. We received 21 respondents. For each scene, re-
spondents were shown 360-degree novel view videos of the
scene inferred both with and without SDS anchoring. The
videos were shown in a random order and respondents were
unaware which video corresponded to the use of SDS an-
choring. Respondents were asked:

1. Which scene seems more realistic?
2. Which scene seems more creative?
3. Which scene do you prefer?

Respondents generally preferred the scenes produced by
SDS anchoring, especially with respect to “Which scene
seems more creative?”

C.3. Ablation studies

We perform ablation studies on dataset selection and camera
representations. For 2D novel view synthesis metrics, we
compute metrics on a held-out subset of scenes from the
respective datasets, randomly sampling pairs of input and
target novel views from each scene. For 3D SDS distillation
and novel view synthesis, our settings are identical to the
NeRF distillation settings for our main results except that
we use shorter-trained diffusion models. We train them for
25,000 steps as opposed to 60,000 steps for computational
constraint reasons.
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Scene name Input view index  Content scale

bicycle 98 9
bonsai 204 9
counter 95 9
garden 63 9
kitchen 65 9

room 151 2.
stump 34 9

Table 1. Setup for the Mip-NeRF 360 dataset
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