Dual Pose-invariant Embeddings: Learning Category and Object-specific
Discriminative Representations for Recognition and Retrieval

Supplementary Material

In the supplementary material, we present additional re-
sults that could not be reported in detail in the main paper
due to space constraints. Our supplemental is organized as
follows. In Sec. 6, we present UMAP visualizations of the
learned pose-invariant embeddings for the ObjectPI, Mod-
elNet40, and FG3D datasets. In Sec. 7, we present a de-
tailed ablation study of the different components of the pro-
posed pose-invariant object loss. We investigate how the
inter-class and intra-class distances for the object-identity
classes are optimized in the object embedding space, and
further explain how the separation of object-identity classes
leads to significant performance improvement on object-
level tasks. Furthermore, we investigate how the object-
identity classes are better separated when learning dual em-
bedding spaces as compared to a single embedding space
in Sec. 8. Subsequently in Sec. 9, we study the effect
of embedding dimensionality on category and object-based
classification and retrieval tasks. Next, we illustrate how
self-attention captures correlations between different views
of an object using multi-view attention maps in Sec. 10,

and finally present qualitative single-view object retrieval
results in Sec. 11. At the end, additional details of the cate-
gory and object-level tasks are provided in Sec. 12.

6. UMAP Visualization of Pose-invariant Em-
beddings

For a qualitative understanding of the effectiveness of our
approach, we compare the embeddings generated by the
prior pose-invariant methods (specifically, PI-CNN, PI-
Proxy, and PI-TC) in [7] with our method. For this, we use
UMAP to project the embeddings into the 2-dimensional
space for visualization. In Fig. 8, we compare the UMAP
plots for a subset of the test dataset of ModelNet-40. Since
ModelNet-40 has a large number of objects in the test
dataset, we choose 100 objects for visualization from five
mutually confusing categories such as tables and desks,
chairs, stools, and sofas. In the category plots, we use five
distinct colors to indicate instances from each of the five cat-
egories. In the object plots, instances of each object-identity
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Figure 8. Qualitative comparison of the embedding space learned for a subset of the ModelNet40 test dataset (from 5 categories such as
table, desk, chair, stool, sofa with 100 objects) by prior pose-invariant methods [7] and our method (bottom-right). In the category plots
(to the left of each subfigure), we use five distinct colors to indicate instances from each of the categories. In the object plots (to the right
of each subfigure), instances of the same object-identity class are indicated by a unique color and shape.
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Figure 9. Comparison of the object embedding space learned for the ObjectPlI test dataset (with 98 objects) by prior pose-invariant
methods [7] and our method (right). Each instance is an object view and each object-identity class is denoted by a unique color and shape.
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(a) Object-identity embeddings for 39 airplane objects (3 objects each from 13 airplane categories)
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(b) Object-identity embeddings for 60 car objects (3 objects each from 20 car categories)
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(c) Object-identity embeddings for 99 chair objects (3 objects each from 33 chair categories)

Figure 10. Comparison of the object embedding space learned for the FG3D test dataset (comprising objects with fine-grained differences
from 13 airplane categories in (a), 20 car categories in (b), and 33 chair categories in (c)) by prior pose-invariant methods [7] and our
method (right). Each instance is an object view and each object-identity class is denoted by a unique color and shape. It can be observed
that our object-identity embeddings are better clustered and separated from other objects as compared to prior methods.



class are indicated by a unique color and shape.

Prior pose-invariant methods (PI-CNN, PI-Proxy, and
PI-TC) in [7] learn a single embedding space. For each
of these methods, we show the UMAP visualizations of
the same embedding space with the category and object-
identity labels in the two subfigures (titled category and
object). As mentioned in the paper, prior work focused
primarily on learning category-specific embeddings, with
the object-to-object variations within each category repre-
sented by the variations in the embedding vectors within the
same embedding space. Specifically, we observe that for
PI-CNN and PI-Proxy (in the top row of Fig. 8), the pose-
invariant embeddings for object-identity classes belonging
to the same category are not well-separated leading to poor
performance on object-based tasks reported in the main pa-
per in Tables 2, 3. PI-TC (bottom-left of Fig. 8) separates
embeddings of the nearest neighbor object-identity classes
in the embedding space leading to comparatively better per-
formance.

In contrast, our method decouples the category and ob-
ject representations in separate embedding spaces leading to
a better separation of both the category and object-identity
embeddings, as can be seen in the bottom-right of Fig. 8.
The most notable difference with prior state-of-the-art is in
regards to the learnt object-identity embeddings. Hence,
for the other datasets we compare the object-identity em-
beddings generated by our method and prior pose-invariant
methods. In Fig. 9, we visualize the embeddings for the
ObjectPI test dataset comprising 98 objects from 25 cate-
gories. The FG3D dataset has 66 fine-grained categories
that comprise 13 types of airplanes, 20 types of cars, and
33 types of chairs. We sample 3 objects per category and
show the object-identity embeddings for the airplane, car,
and chair objects separately in Fig. 10 (a), (b), and (c) re-
spectively. For all the datasets, we observe that the object-
identity classes are better clustered and separated for our
method as compared to prior methods.

We conjecture that our method better separates the
object-identity classes for two reasons. First, our method
separates confusing instances of objects from the same cate-
gory that would otherwise be much too close together in the
embedding space, as we will explain in detail in Section 7.
Second, our method captures category and object-specific
discriminative features in separate embedding spaces. In-
tuitively, this allows us to simultaneously capture common
attributes between objects from the same category in the
category embedding space and discriminative features to
distinguish between them in the object embedding space,
as opposed to learning representations to satisfy these con-
flicting objectives in the same embedding space. This strat-
egy leads to better separability of the object-identity embed-
dings when learning a dual space as compared to learning a
single space, as we will explain in detail in Section 8.

7. Ablation of Pose-invariant Object Loss

As explained in Sec. 2(B) of the main paper, prior ap-
proaches primarily focus on clustering the single-view em-
beddings of each object-identity class close to their multi-
view embeddings but do not effectively separate embed-
dings from different object-identity classes. To ameliorate
this, our proposed pose-invariant object loss is designed to
separate different object-identity classes, and in this sec-
tion, we investigate its importance for good performance
on object-based tasks.

Our pose-invariant object loss in Eqn. 8 has two compo-
nents — clustering loss (L;,+q) that reduces the intra-object
distances by clustering different views of the same object-
identity class, similar to prior approaches. Additionally,
we add a separation loss (L;nter) that increases the inter-
object distances by separating confusing instances of dif-
ferent object-identity classes from the same category. To
understand the effectiveness of each component, we train
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Figure 11. This figure illustrates how the minimum inter-class dis-
tances between object-identity classes (dii2,. in blue), maximum
intra-class distances (d;yir, in green), and the ratio of the two dis-
tances (p in red) change as the different components of our pose-
invariant object loss are optimized for all three datasets. When
training using the clustering loss only, p decreases. Whereas,
when training using both the losses together, p increases indicat-

ing better compactness and separability of object-identity classes.



‘ Optimized distances
‘ during training

Test Performance on Object-level tasks

Classification (Acc. %) ‘ Retrieval (mAP %)

‘ Datasets

‘ Losses _ ‘ ‘
| | | dmaz (1) dmin (1) p(1) | Single-view  Multi-view | Single-view  Multi-view |
. Lintra 0.26 023 0.87 84.9 87.8 59.8 93.2

‘ ObjectPT ‘ intra + Linter 0.60 0.90 1.50 92.7 98.0 81.0 99.0
Lintra 0.22 0.18 0.80 68.5 68.6 430 76.2

‘ ModelNet-40 ‘ Lintra + Linter ‘ 0.41 0.62 1.51 ‘ 93.7 96.9 ‘ 84.0 98.2 ‘
FG3D Lintra 023 0.15 0.65 202 244 10.4 34.7
Lintra + Linter 0.63 053 0.84 83.1 91.6 73.0 95.5

Table 5. This table shows the maximum intra-class and minimum inter-class distances between object-identity classes after training, and
also the test performance on single-view and multi-view object recognition and retrieval tasks for the three datasets, when training with

and without the separation loss.

the PAN encoder with and without the separation loss. We
track how the intra-class and inter-class distances are opti-
mized during training in Fig. 11, and also the performance
on object recognition and retrieval tasks in Table 5.

In Fig. 11, we plot the maximum intra-class distance
(di»%* . in green), and the minimum inter-class distance

between object-identity classes from the same category
(d™i” in blue) during training to monitor the compact-
ness and separability of object-identity classes respectively.
These distances are computed using the object-identity em-

beddings and averaged over all objects. We also plot the

min .
. max : min
in red. A lower d]'¢% . and higher d]'}"2

and p values would indicate embeddings of the same object-
identity class are well clustered and separated from embed-
dings of other object-identity classes from the same cate-
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Figure 12. We show the object-identity embeddings for a total
of 100 objects from 5 categories of ModelNet-40 (20 objects from
each category, such as tables, desks, chairs, stools, and sofas).
The instances of each object-identity class is indicated by a unique
color and shape. This figure illustrates that only clustering embed-
dings of the same object-identity classes is not sufficient to be able
to distinguish between different object-identities, especially when
there are many visually similar objects (left). Clustering the differ-
ent views of the same object-identity classes, and simultaneously
separating the different object-identity classes encourages learn-
ing more discriminative embeddings (right).

Both clustering and separation 10Ss (Lintra + Linter)

gory.

We observe that training using the clustering loss
(Lintra) reduces the d7}¢¥ as it encourages clustering dif-
ferent views of the same object-identity together encourag-
ing the network to learn pose-invariant features. However,
only using the clustering loss also reduces di", , thereby
reducing p as can be observed in the left of Fig. 11. There-
fore, the object-identity classes are not well separated as
can be seen in the left of Fig. 12, and this results in poor
performance on object-level tasks.

Whereas, when training using the clustering and separa-
tion loss jointly (L;ntrq + Linter), We observe in the right
of Fig. 11 that p increases as the d™ decreases at a much
slower rate than d™> and dMn eventually converges to a
value beyond which it does not decrease substantially, in-
dicating that our loss enforces separability between objects
from the same category. For all the datasets, adding the sep-
aration loss yields significant performance improvement on
object-level tasks, as can be seen in Table 5. This is because
it enhances the inter-object separability that allows the en-
coder to learn more discriminative features to distinguish
between visually similar objects. This can be observed in
the right of Fig. 12, where each distinct object-identity class
(indicated by a unique color and shape) can be more easily
distinguished from other object-identity classes.

8. Optimizing Intra-class and Inter-class Dis-
tances in Single and Dual Spaces

As mentioned in the previous section, the pose-invariant ob-
ject loss is designed to simultaneously enhance the inter-
class separability and intra-class compactness of object-
identity classes. In this section, we study how the distances
between the samples in the object embedding space are op-
timized during training when learning single and dual em-
bedding spaces.

For comparison, we show how these distances are op-
timized when learning representations in a single and dual
embedding spaces, at the top and bottom of Fig. 13(A), (B),
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Figure 13. For all three datasets, this figure illustrates that our
pose-invariant object loss increases the ratio p that indicates bet-

ter separability and compactness of object-identity classes. We f ¥ b
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observe that the values of the ratio p (in red) and the minimum ¥ oE op

inter-class distance di*%7,. (in blue) are higher when learning a

dual space as compared to a single space. This indicates better
separation between object-identity classes when learning in the
dual space.

and (C) for the ObjectPI, ModelNet-40, and FG3D datasets
respectively. We observe that the values of p and the min-
imum inter-object distances (d™) are much higher in the
dual space, which indicates that the object embeddings in

the dual embedding space are better separated than those in

the single embedding space, leading to better performance category embedding space and object-identity classes in the object

on object-based tasks, as shown in Table 6. embedding space (right) as compared to learning representations
Fig. 14 illustrates this effect using UMAP visualiza- in the same embedding space (left).

tions of the embeddings in single and dual spaces. As men-

tioned in the paper, we jointly train our encoder using pose-

Figure 14. UMAP visualization of the 100 objects from 5 different
categories of ModelNet-40 for the single embedding space (left)
and dual embedding space (right). The figure illustrates that de-
coupling the category and object-identity representations in sepa-
rate spaces leads to better separability between categories in the

invariant category and object-based losses. In the single em- the same embedding space, object-identity classes are not
bedding space, category-based losses aim to cluster embed- separated well, as can be seen in Fig. 14 (left). In the dual
dings of object-identity classes from the same category to- space, the category and object representations are decou-
gether, and in the same embedding space, the object-based pled, and the category and object losses optimize the dis-
loss aims to separate different object-identity classes from tances in the separate embedding spaces. As can be seen
the same category. Due to these conflicting objectives in in Fig. 14 (right), the object and category embeddings are

Test Performance on Object-level tasks

Optimized distances

‘ Datasets ‘ Embedding ‘ durlng training ‘ Classification (Acc. %) ‘ Retrieval (mAP %) ‘
\ | SPaC® | gmaz (1) gmin (1) p(1) | Singleview Multi-view | Single-view  Multi-view |
, Single 0.32 0.33 1.03 88.5 98.0 68.5 98.9
‘ ObjectPT ‘ Dual ‘ 0.60 0.90 1.50 ‘ 92.7 98.0 ‘ 81.0 99.0 ‘
Single 0.24 022 092 81.2 85.6 59.2 90.4

‘ ModelNet-40 ‘ Dual ‘ 0.41 062 151 ‘ 93.7 96.9 ‘ 84.0 98.2 ‘
FG3D Single 0.29 016 055 26.2 31.0 15.7 429
Dual 0.63 053 0.84 83.1 91.6 73.0 95.5

Table 6. This table shows the maximum intra-class and minimum inter-class distances between object-identity classes after training when
learning a single and dual embedding space. We observe that the di¥\%, and p values are higher in the dual embedding space indicating
better separability of object-identity classes in the object embedding space. This yields better performance on object-level tasks for all the

three datasets.
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(b) ObjectPI dataset

Figure 15. This graph illustrates the effect of embedding dimen-
sionality on Average Classification and Retrieval performance for
category and object-based tasks for ModelNet-40 (top) and Ob-
JjectPI (bottom) datasets.

much better separated and we learn more discriminative em-
beddings overall in the dual space. This leads to significant
performance improvements on object-based tasks, as can be
seen in Table 6.

9. Embedding Dimensionality

For this experiment, we varied the embedding dimensional-
ity from d = 8,16, --- ,2048 for the category and object
embedding space. We measured the performance of our
method in terms of the average classification and retrieval
performance as well as average performance on category-
based and object-based tasks.

From Fig. 15, we observe that the performance on
all four metrics improves with an increase in embedding
dimensionality but beyond a certain embedding dimen-
sion, the performance only improves marginally. For the
ModelNet-40 dataset, we observe that d = 64 for category-
based tasks and d = 128 for object-based tasks is suffi-
cient. For the ObjectPI dataset, we observe that d = 256
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Figure 16. Visualization of multi-view attention maps for the cat-
egory and object self-attention layers.

and d = 512 are sufficient for category-based and object-
based tasks. We conjecture that higher embedding dimen-
sionality is required for ObjectPI than ModelNet-40 as the
embeddings for ObjectPI need to additionally capture color
and texture information instead of just shape information
for ModelNet-40. In general, the embedding dimensional-
ity required for good performance on object-based tasks is
higher than on category-based tasks as object embeddings
need to capture more fine-grained details to differentiate be-
tween objects.

10. Multi-view Attention Maps

We plot the attention weights for the self-attention layers
for the object and category embeddings in Figure 16. We
observe that for category embeddings, the attention weights
are higher for representative views that capture the overall
shape of the kettle. All views of the object are correlated



to these representative views. For object embeddings, we
observe that the attention weights are higher for the views
that capture attributes related to the handle. This is possibly
because the different kettles in the dataset have variations in
the location (from the top or side) and shape of the handle.

11. Qualitative Retrieval Results

We show some qualitative object retrieval results on Ob-
jectPI and ModelNet40 datasets in Figs. 17 and 18 respec-
tively. The single-view object retrieval results show that
given an arbitrary view of the object, our method can re-
trieve the other views of the same object correctly in Figs.
17 and 18. Despite variability in object appearance from
different viewpoints, the presence of similar objects in the
database as well as deformable objects (such as books,
clothing, and so on), our method can retrieve objects with
high precision.
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Figure 18. For a single-view query in each row, the retrieved im-
ages of other views of the same object are shown on the right for
the ModelNet40 dataset. The green and red bounding boxes indi-
cate correct and wrong results respectively.

. Query Retrieved results

(®)

Figure 17. This figure shows our object retrieval results for the Object PI dataset. Given a single view query from an arbitrary pose on the
left, the top-7 retrieved results are shown on the right in each row. Green bounding boxes indicate correct retrieval results and red boxes
indicate incorrect results. In (a), we demonstrate that our framework can retrieve other views of the same object despite having similar
objects in the test dataset. In (b), we demonstrate, that despite significant appearance changes under various pose transformations for
different everyday objects, our framework can retrieve objects accurately.



12. Pose-Invariant Category and Object-level
Recognition and Retrieval Task Details

Since object appearance varies with viewpoints, the avail-
ability of multiple views of an object during inference helps
in accurately recognizing objects. However, in most real-
world applications, such as automatic checkout systems,
robotic manipulation, content-based search, and product
recognition and retrieval, only a single viewpoint of an ob-
ject may be available at inference time. In an ideal sce-
nario in which pose invariance has been achieved, the per-
formance based on a single viewpoint should closely match
that achieved when multiple viewpoints are available.

In our paper, we present recognition and retrieval perfor-
mance results for both scenarios. That is, we consider both
situations, one in which we only have a single view for an
object, and two, when we have multiple views. The recogni-
tion performance is reported as classification accuracy and

the retrieval performance is reported as mean average pre-
cision (mAP).

The details of category and object-level tasks are pro-
vided in the subsequent subsections.

12.1. Category-level tasks

Single-view or Multi-view category recognition:  These
tasks predict the category from a single view or a set of ob-
ject views respectively. Single-view or Multi-view category
retrieval: The goal of these tasks is to retrieve images from
the same category as the query object from a single view or
multiple views respectively. These are the same as [7].

12.2. Object-level tasks

In a practice that is common in solving problems in face and
cross-view recognition, we evaluate pose-invariant recog-
nition and retrieval by splitting the test dataset into two
disjoint parts, ‘probe’ and ‘gallery’, with non-overlapping
views for each object in both parts. For Single-view object-
level tasks, the dataset is split such that for every object,
each view is selected once as a probe image and the re-
maining views are selected as gallery images. The results
averaged over all splits are reported. For Multi-view object-
level tasks, the dataset is split equally into two halves, with
one-half used as the gallery and the other half used as the
probe. With the data being split in this manner, the two
halves capture the object from opposite sides in the view-
space.

The task details are as follows. Single-view or Multi-
view object recognition: The goal is to recognize single-
view or multi-view probe images by correctly matching
them to the images of the same object-identity in the gallery
dataset. Single-view or Multi-view object retrieval: Given
a single view or a partial set of views of an object from the
probe split as a query, this task aims to retrieve other views
of the same object-identity (as the object in the query) from
the gallery split.



