
DiffAssemble: A Unified Graph-Diffusion Model for 2D and 3D Reassembly

Supplementary Material

A. Experiment Details

Hardware. The experiments were conducted on 2 different

machines: four NVIDIA Tesla V100 16GB, 380 GB RAM,

and 2x Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz

Sky Lake CPU, and one NVIDIA RTX 4090 GPU, 64 GB

RAM, and 12th Gen Intel(R) Core(TM) i9-12900KF CPU

@ 3.20GHz CPU.

Model Settings. We train DiffAssemble with a learning

rate of 10−4 and Adagrad as the optimization algorithm [11].

During our training process, we set a maximum of 1000

epochs, but we stop the training earlier to prevent unneces-

sary iterations when the loss no longer decreases.

B. Equivariant Feature Representation

As we presented in Section 3.2, one of key point of our

proposal lies in its ability to work with element features

hm, which can be extracted by any pre-trained encoders. In

particular, we discover the importance to extract rotation-

equivariant features.

A function ϕ is equivariant to the action of a group G if

ϕ(Sg(·)) = S
′

g(ϕ(·)) for all g ∈ G, where Sg and S
′

g are

linear representations related to the group element g [38].

This means that applying ϕ to the codomain of Sg(·) is

equivalent to applying S
′

g ∈ G to the codomain of ϕ. In

this work, the transformation Sg and S
′

g are rotations. As

a result, the equivariant function ϕ(·), i.e. the backbone,

ensures the consistency of the rotational effect irrespective

of whether it is applied before or after the function. Conse-

quently, DiffAssemble associates a specific rotation rm (in

the input space) to the features vector hm.

C. Diffusion process and Rotation in 3D

We provide a more detailed description of how we introduce

Gaussian Noise with 3D rotations. Following [25], we use

a specific procedure to scale the rotation matrices fr(r
m
t )

by i) converting the rotation matrix to values in the Lie

algebra so(3), ii) multiplying them element-wise with t-
dependent scalars, and iii) converting back to a rotation

matrix through matrix exponentiation. Analogous to an

addition in Euclidean space, the composition of rotations is

done through matrix multiplication in SO(3) as:

λ(γt, rmt ) = exp(γt log(fr(r
m
t ))),

where λ(. . . ) is the geodesic distance flow from I, the iden-

tity matrix, to rmt by an amount γt.

In particular, for the Forward Process, we rewrite Equa-

tion (1) to inject noise into rm0 :

q(rmt |rm0 ) = IGSO(3)(λ(
√
αt, rm0 ), (1− αt)),

where IGSO(3) is the isotropic Gaussian distribution (IG) that

is compatible with SO(3) rotation directly. The IG distri-

bution is parameterized in an axis-angle form by sampling

uniformly an axis and rotation angle ω ∈ [0,π] as:

f(ω) =
1− cosω

π

∞
�

l=0

(2l + 1)e−l(l+1)ϵ2 sin((l + 0.5)ω

sin(ω/2)
.

For the Reverse Process, letting Rt = {rmt }m∈[1,··· ,M ] and

H = {hm}m∈[1,··· ,M ], we rewrite Equation (2) as follows:

R̂t−1 = λ

�√
αt−1

αt

, Rt

�

λ

�

1− αt−1√
αt

, ϵrot
θ (Rt, t,H)

�T

,

where ϵrot
θ (Rt, t,H) is the estimated noise that has to be

removed from Rt to recover R̂t−1.

D. Additional Ablations

Missing Fragments in 3D Objects Reassembly We as-

sess the performance of DiffAssemble and the baselines in

scenarios involving missing 3D pieces. We consider a setting

where each object is composed of 10 to 20 parts. We test

the methods in four different scenarios: i) without missing

pieces, ii) 10% of missing pieces, iii) 20% missing pieces,

and iv) 30% of missing pieces. We do not retrain the models

with missing pieces, but instead, we use the same method and

weights as in the main paper experiment described in Sec-

tion 4.1. To account for potential variations in fracture sizes

within each object, we report the experiment five times using

different seeds. This methodology helps alleviate potential

biases introduced by excluding fractures with differing levels

of complexity. Mean and standard deviation for each metric

provide an indication of the overall behavior of the compared

methods.

Table 2 reports the results, demonstrating that in all four

scenarios, DiffAssemble outperforms the baseline in 2 out

of 3 metrics. There is a decrease in performance when we

increase the number of missing pieces, even if this reduction

is minimal.

2D Jigsaw Puzzle. Table 6 reports further ablation results

for the puzzle setting, which we could not include in the

main paper due to space constraints.



Missing 0% 10%

Method
RMSE (R) ↓ RMSE (T ) ↓ PA ↑ RMSE (R) ↓ RMSE (T ) ↓ PA ↑

degree ×10−2 % degree ×10−2 %
Global 83.00 18.74 7.02 83.86 18.76 6.78

DGL 84.56 18.26 9.72 84.74 18.98 8.42

LSTM 88.26 19.64 4.78 88.40 19.74 4.96

SE(3)-Equiv 81.82 18.50 6.74 82.96 18.54 6.58

DiffAssemble 80.13 19.02 11.61 80.32 19.32 11.20

Missing 20% 30%

Method
RMSE (R) ↓ RMSE (T ) ↓ PA ↑ RMSE (R) ↓ RMSE (T ) ↓ PA ↑

degree ×10−2 % degree ×10−2 %
Global 84.20 18.86 6.66 84.76 18.96 6.62

DGL 85.01 19.80 7.34 85.64 20.68 6.56

LSTM 88.72 19.90 4.88 88.96 20.01 4.36

SE(3)-Equiv 82.52 18.72 6.54 82.88 19.48 6.51

DiffAssemble 80.37 19.52 10.67 80.46 19.84 10.43

Table 5. Results for DiffAssemble on BB’s objects with 8-20 pieces when 0%/10%/20%/30% of the pieces are missing pieces. Our approach

is robust even in the hardest scenario where 30% of the pieces are missing.

STAGE CHANGES PuzzleCelebA PuzzleWikiArts

6x6 8x8 10x10 12x12 6x6 8x8 10x10 12x12

Representation
Non-Equivariant Enc. 96.12 71.62 91.98 64.15 25.31 14.63 8.19 4.96

Invariant Enc. 22.97 20.01 16.87 13.63 7.64 4.64 2.79 1.66

Diff. Process No Diff. process 99.43 79.84 99.05 91.28 73.07 54.70 22.68 18.27

GNN Standard GCN [24] 85.03 54.35 71.19 45.56 30.12 22.07 10.77 1.08

DiffAssemble Base Implementation (Tab. 3) 99.51 84.94 99.30 97.76 90.65 72.79 63.33 53.08

Table 6. We conduct an ablation study to evaluate the impact of each component of DiffAssemble for Jigsaw puzzle solving on PuzzleCelebA

and PuzzleWikiArts. The base implementation corresponds to our proposed approach, as reported in Table 3 of the main paper.

We assess the benefit of employing rotation-equivariant

features, instead of invariant and non-equivariant ones.

These two last representations lead to worse performance

in both datasets. In particular, these differences are more

evident with the WikiArt dataset. DiffAssemble obtains an

average improvement of 94.41% and 82.43% compared to

DiffAssemble with invariant and non-equivariant features.

This result highlights, one more time, the importance of

employing rotation-equivariant features to solve reassembly

tasks when rotation is involved.

We aimed at demonstrating that the adoption of the diffu-

sion process is well-founded and effective. For this reasons,

we experiment DiffAssemble wihtout the diffusion process.

The results show that predicting the pose without the dif-

fusion process, i.e., in 1 step, leads to worst performance,

which serves as strong justification for the inclusion and use

of the diffusion process in our approach.

Finally, we conducted an ablation for the GNN architec-

ture adopted in DiffAssemble. Specifically, we assess the

Graph Convolutional Network (GCN) [24] against UniMP.

The goal is to investigate the impact of the attention mecha-

nism on information propagation. For this purpose, we de-

fine the adjacency matrix A ∈ RM×M of the GCN as an all-

ones matrix. Tables 6 reports the results of this comparison

in the 2D and 3D scenarios, respectively. DiffAssemble with

the use of UniMP consistently outperforms DiffAssemble

with GCN, showing a remarkable improvement. These re-

sults highlight the importance of employing a mechanism

that can effectively capture relationships among nodes.

D.1. Effect of Edge Pruning

Figure 7 presents an ablation study on PuzzleCelebA, where

we vary the pruning rate during training. Increasing the

pruning, i.e., reducing the graph size, has a minor effect on

the final results.



0 20 60 80

80

90

100

Pruning (%)

A
cc

u
ra

cy
(%

)

6×6

12× 12

Figure 7. Ablation Sparse Attention Mechanism for Jigsaw puzzle

solving on PuzzleCelebA.

E. Dataset Details

3D Reassembly Task. A 3D reassembly involves aligning

fragments of a broken object into its original form, an es-

sential task with applications in artifact preservation, digital

heritage archiving, computer vision, robotics, and geome-

try processing. Despite its practical importance, the field

has faced challenges due to the lack of suitable datasets for

studying the natural fracture process. Existing datasets, such

as PartNet [33], AutoMate [23], and JoinABLe [49], rely on

semantic segmentation, failing to represent objects broken

under natural, physically realistic conditions. Breaking Bad

(BB) [37] fills this gap by simulating fractures using an algo-

rithm that accounts for an object’s most geometrically natural

breaking patterns, thus creating a dataset that more realisti-

cally represents the challenges faced in fragments reassem-

bly. BB contains approximately 10,000 meshes sourced from

PartNet and Thingi10k. Each mesh includes 80 fractures,

resulting in a total of 1,047,400 breakdown patterns. The

dataset is divided into three subsets: everyday, artifact, and

other. In this work, we focus on the everyday subset, as

it is the commonly used dataset for evaluation in previous

literature [50]. Qualitative examples can be found in the

video attached to this Supplementary Material.

2D Reassembly Task. In this task, we evaluated

DiffAssemble on two datasets: PuzzleCelebA and Puz-

zleWikiArts. Figure 8 shows some examples of inputs and

reconstructions. More examples can be found in the video

attached as Supplementary Material.

• PuzzleCelebA is based on CelebA-HQ [26] which con-

tains 30K images of celebrities in High Definition (HD).

Despite its superficial simplicity, this dataset poses sig-

nificant challenges for puzzle-solving algorithms due to

the inherent symmetry in human faces and often indistinct

backgrounds. The dataset is divided in 80-20% train-test

split, with 6,000 test puzzle permutations and randomly

rotated patches.

• PuzzleWikiArts is based on WikiArts [46], and contains

Figure 8. Qualitative results showing the diffusion process from

random to solved puzzle. Each arrows correspond to one piece of

the puzzle and its orientation indicate the orientation of the piece.

63K images of paintings in HD. This dataset is particularly

challenging due to very different content, artistic styles,

and intricate patterns, which test the limits of puzzle-

solving algorithms. The dataset is split into an 80-20%

train-test ratio, resulting in 50k training images and 13k

test puzzles across various grid sizes. It represents a more

challenging dataset for puzzle solving as the paintings

do not have a common pattern as in PuzzleCelebA (i.e.

portraits).



METHOD W/ % DEGREE PuzzleCelebA

6x6 8x8 10x10 12x12 14x14 16x16 18x18 20x20

Degree 20%
Classical dropout 91.60 57.08 82.32 50.18 74.43 25.40 61.45 28.35

Sparse Attention Mechanism 92.37 59.45 87.67 54.07 83.11 31.07 73.88 32.97

Degree 60%
Classical dropout 99.17 72.93 98.56 94.07 98.53 46.48 98.35 92.51

Sparse Attention Mechanism 99.04 73.91 98.43 94.35 98.70 48.26 97.75 93.29

Degree 80%
Classical dropout 99.15 76.45 98.75 95.87 98.58 51.51 98.14 94.93

Sparse Attention Mechanism 99.15 78.18 98.77 95.71 98.69 52.28 97.80 94.34

Table 7. Ablation Sparse Attention Mechanism for Jigsaw puzzle solving on PuzzleCelebA.


