Neural Implicit Morphing of Face Images
- Supplementary Material -

1. Morphing attack detection performance

In addition to the quality metrics of morphings, we present
our results from the perspective of morphing attack detection
(MAD) performance metrics. This experiment was con-
ducted under the same protocol defined in Sec. 4.2 in the
main work. The morphing type is different for protocols
(but follow the same identity pairing list) while the original
images remain the same. The morphed images were tested
using the MAD approach proposed in [4].

The primary metric for assessing the detection perfor-
mance of single image morphing relies on the relationship
between the Bona fide Presentation Classification Error
Rate (BPCER) and the Attack Presentation Classification
Error Rate (APCER)(according to ISO/IEC 30107-3 [2]),
which may be plotted as a Detection Error Trade-off (DET)
curve. We report the performance by BPCERQAPCER
=(0.1,0.01) (see Table 1) and DET curve (see Fig 2).

Table 1. APCER@BPCER = (0.1, 0.01) of MAD method [4]
in different protocols. Lower means better detector performance
against the morphing method.

. BPCERQAPCER =6
Morphing Type S=01 S=001
OpenCV 0.117 0.951
StyleGAN3 0.264 0.666
DiffAE 0.745 0.951
Ours (Linear) 0.176 0.519
Ours (S. Clone) 0.137 0.500
Ours (S. Mix) 0.421 0.824
Ours (diffAE) 0.754 0.950

By evaluating the MAD performance, we can gauge the
detection complexity inherent in our morphs. Note that
these results come with a disclaimer: the effectiveness of the
chosen detector is not universal and may be influenced by
certain unknown biases inherent to the detector itself [4].

Based on the results, the “Cloning” method demonstrates
comparable performance to “OpenCV”. The “Mix” morphs
are harder to detect than other interpolation based morphs
and they appear to be more challenging than StyleGAN3.
DiffAE morphs are challenging to detect and indeed repre-
sent an unseen type of attack for this detector instance.

2. Ablation Studies

We present experiments showing the effects of each loss
term (Sec. 2.1) and network width (Sec. 2.2). For these
experiments, we employed the landmarks detected using
DLib [3, 5], and images from the provided with the FRLL
dataset [1]. Additionally, we used the network initialization
procedure proposed in [6].

2.1. Loss function study

In this section, we measure the impact of each constraint
of our loss function in the warping/blending. Recall that
our loss function £(0) = W (0) + D(0) + T () (Eq. 2 in
the paper), has three terms: Warping (%), data (%), and
thin-plate energy (9°). The warping constraint is composed
by the identity and inverse constraints (Eq. 3 in the paper):

°W(9)=/\|T(x,O)—xHQd:c—I—/HT(T(x,t),—t)—m”Qd:rdt. (1)
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Table 2 presents the FID and LPIPS (Ip — I, and I — I;)
for these experiments. We used linear blending for all cases,
and hidden-layer width of 128 neurons.

Table 2. FID and LPIPS for our warping with linear blending with
different loss terms deactivated.

Experiment FID| LPIPS (p,I)] LPIPS(I, 1)
No D 113.599 0.215 0.246
No J 499.289 0.594 0.607
No Id. 118.201 0.306 0.314
No Inv. 113.224 0.278 0.285
Original 31.950 0.158 0.164

From Table 2 we conclude that J has the most impact
in our results, followed by the identity constraint (Id.), 9,
and the inverse constraint (Inv.). I regularizes the loss,
ensuring that the alignment is smooth during training, while
Id. ensures that the warping will match the original landmark
positions at ¢ = 0 and ¢ = 1. Additionally, & ensures that
the source and target landmarks match for every ¢.
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Figure 1. Overview of the proposed morphing approach. Let I; and I» be two face images represented as sinusoidal MLPs. We mark a
series landmarks (show as magenta points) and pass these as input to train a warping network, shown in the second column, also a (shallow)
sinusoidal MLP. The result of this step are two aligned and warped images .¥; and %>, shown in the third column, encoded in the network
itself. Afterwards, the warpings may be used to create different blendings. We’ve focused on linear, Poisson and generative blendings.
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Figure 2. MAD performance of MorDeephy approach [4] on vari-
ous types of face morphing.

2.2. Network width

For the neural warping, we vary the network width of its
single hidden layer by 32 and 64 neurons. Fig 3 shows
reconstructions using mixed cloning with varying values of
t and morphing directions (either Iy to I; or I; to Iy).

Table 3 shows the FID and LPIPS scores for varying
hidden-layer widths. The result quality improves dramati-
cally as the network size increases as well. However, at 128
neurons, the results reach a good trade-off between quality
and training speed. Thus, we chose this size for the experi-
ments in the main paper.

3. Additional Results

We show additional variations of ethnicities and genders to
illustrate the flexibility of our approach (Sec. 3.1). Further-
more, we show experiments using automatic face landmark
detection via DLib (Sec. 3.2) and how the morphings may
be improved with additional manual adjustments to these
landmarks (Sec. 3.2.1).
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Figure 3. Samples of results drawn with varying network widths.
The left and right columns show Iy and I; respectively. The second
column shows a morphing from Iy to I; at ¢ = 0.4, while the third
column shows morphing from I to Iy at ¢ = 0.6.

Table 3. FID and LPIPS for our warping with linear blending using
32, 64 or 128 neurons for the hidden layer. The 128 neuron results
were reproduced from Tab. 1 in the main paper.

Net. Width  FID| LPIPS(I,,I)| LPIPS(L1) |
32 101.034 0.211 0.222
64 112.270 0.215 0.224
128 31.950 0.158 0.164

3.1. Variations of Gender and Ethnicity

One of the main limitations of the current state-of-the-art
methods is generating credible morphings of people of dif-
ferent genders and ethnicities. Fig 4 shows results of these
morphings using our approach. We employed the landmarks
provided with the FRLL dataset for the neural warping.
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Figure 4. Morphings between people of varying ethnicities and
genders. The left column shows the source image (Io), followed by
the morphing of Iy to I; at ¢ = 0.6, morphing of I; to Iy at ¢ = 0.4,
and the target image (I).

3.2. Employing Automatic Landmark Detection

The landmarks used for the experiments were provided with
the dataset, however, other approaches for facial landmark
detection may be employed and attain equally good results.
For the experiments below, we used DLib with the 68 land-
mark model [3, 5]. Fig 5 shows the landmarks overlaid on
sample images of the FRLL dataset, while Fig 6 shows the
results of morphings using our method with said landmarks.

3.2.1 Manual Doctoring of Landmarks

In addition to automatic landmark detection, we may also
manually edit landmarks to constrain other regions during
the warping, such as clothing, and hairline. This improves
the morphing on areas other than the face. Fig 7 shows a
visual comparison between morphing using only automatic
landmark detection and manual landmark adjustments.

Figure 5. Landmarks found by DLib 68 landmarks overlaid on
sample faces of the FRLL dataset.

Figure 6. Morphings created using our neural warping approach
with landmarks obtained with DLib 68 landmarks model. From left
to right: Source image (Ip), followed by the morphing of I to I; at
t = 0.6, morphing of I to Iy at t = 0.4, and target image (I1).



Figure 7. Morphing with automatic and manually placed landmarks.
Left and right columns show Ig and I. The second column shows
a linear blending at ¢ = 0.6 with manually positioned landmarks in
addition to the ones detected by DLib. The third column shows a
linear blending after our neural warping using only DLib landmarks.
Notice how, besides the face, other areas such as neck and hairline
are aligned on the second column, compared to the third.
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