
Neural Point Cloud Diffusion
for Disentangled 3D Shape and Appearance Generation

– Appendix –

A1. Visualization of the neural point cloud diffusion process
Figure A1 shows a visualization of the neural point cloud diffusion process for unconditional generation on ShapeNet Cars,
ShapeNet Chairs, and PhotoShape Chairs.

Figure A1. Visualization of the neural point cloud diffusion process. We generate the shape and appearance of 3D objects on ShapeNet
Cars, ShapeNet Chairs, and PhotoShape Chairs with the proposed Neural Point Cloud Diffusion (NPCD) model. We visualize the neural
point clouds Pt = (Pt,Ft) from intermediate timesteps t of the diffusion process. In total, the diffusion process of NPCD has 1000
timesteps and we visualize every 100th timestep. The features of the neural point clouds are visualized by taking the first three PCA
components as RGB color. The last visualized neural point cloud P0 represents the final generated 3D object. Additionally, we visualize a
Point-NeRF rendering of the final neural point cloud.

1



A2. Implementation details
A2.1. Category-Level Point-NeRF Autodecoder

Architecture. For the aggregation MLP Fϕ, we use 4 linear layers with a hidden dimension of 256, each followed by a
LeakyReLU, and an output projection linear layer that maps to 256d. For the color MLP Gψ , we use 4 linear layers with
a hidden dimension of 256, each followed by a LeakyReLU, and an output projection linear layer that maps to 3d. For the
density MLP Hγ , we use 1 linear layer with a hidden dimension of 256, followed by a LeakyReLU, and an output projection
linear layer that maps to 1d.

Training parameters. We construct training samples by splitting the available views per object into groups of 50 views
per sample. In each iteration, we use 8 samples and 112 pixels of each view in each sample. The image reconstruction loss
is hence optimized for an effective batch size of 8 · 50 · 112 = 44800 pixels. For the volumetric rendering of each ray, we
sample 128 shading points. We use the Adam optimizer with a constant learning rate of 1e−3. On SRN cars and chairs, we
train Point-NeRF for ca. 7500 epochs. On PhotoShape Chairs, we train Point-NeRF for ca. 1875 epochs (due to the 4 times
higher number of training views per object, each epoch contains 4 times as many samples per object as in SRN Cars/Chairs).
The training time on a single RTX 4090 GPU is between 3 and 5 days, depending on the dataset.

Rendering runtime. For the Point-NeRF rendering at a resolution of 128x128px, we measure a mean runtime of 35 msec
on a RTX 4090 GPU.

A2.2. Diffusion model

Architecture. For the denoiser network of the diffusion model, we use a standard transformer architecture with 24 layers,
a feature dimension of 1024d and 16 heads [8, 9]. This architecture has ca. 300M parameters.

Diffusion model parameters. For the diffusion model, we use the linear noise schedule from DDPM [5] with 1,000 steps
and β ranging from 0.0001 to 0.02. We normalize the neural point clouds such that the positions are unit Gaussian distributed
and the features are in the range [−1, 1] (and apply the inverse transform later before rendering the representation). During
sampling, we clip the coordinates and features to the respective minimum and maximum values of the training dataset.

Training parameters. We train the diffusion model for ca 1.8M iterations with a batch size of 32. We train on a single RTX
4090 GPU with 16 bit and employ flash attention [4]. Training takes ca. 8 days. We use an exponential moving average over
the model parameters with a decay of of 0.9999. On ShapeNet Cars, we use a constant learning rate of 7e−5. On ShapeNet
Chairs and PhotoShape Chairs, we use a lower constant learning rate of 4e−5, as we observed instablities during training. On
all datasets, we use a weight decay of 0.01.

Runtime for unconditional generation. For unconditional generation with 1000 diffusion steps, we measure a mean
runtime of 8.56 sec for a single generation (batch size 1) on a RTX 4090 GPU.

A2.3. Disentangled generation

As described in the main paper, our disentangled generation is comparable to masked image inpainting, using an approach
similar to RePaint [7]. Instead of masking image parts, we mask one modality of our representation (point positions or
features). In Algorithm 1, we provide the algorithm that we use for disentangled generation in full detail. The algorithm is
for appearance-only generation, i.e. where point positions P0 are given and the goal is to generate point features F0. For
shape-only generation, it works vice-versa.

Initialization. As described in the main paper, we obtain the initial noisy neural point cloud (PT ,FT ) by sampling FT from
a unit Gaussian distribution and computing PT from P0 via the forward diffusion process. In Algorithm 1, this is described
by line 2. Importantly, for computing point positions via the forward diffusion process, we sample noise ϵP ∼ N (0, I) once
in the beginning and re-use it in subsequent diffusion steps.

2



Diffusion process. Throughout the diffusion process, we update the point features Ft−1 from the denoiser outputs accord-
ing to the reverse diffusion process (lines 4 and 5).

We update the point positions Pt−1 from the given P0 via the forward diffusion process in instead of the denoiser outputs
(line 10). For this, we re-use the noise ϵP that we sampled during the initialization.

Reverse process also for the point positions. In the last Nrev steps of the diffusion process, we also use the outputs of the
denoiser network to update the point positions via the reverse process (line 13). Depending on the chosen Nrev this allows
for a trade-off between better coherence in the generations at the cost of deviations from the given input point positions.

Resampling. Further, as in RePaint, we apply Nresample resampling steps to the denoised point features in the last Nrepaint
steps of the diffusion process (lines 15 to 21). We observe that this is helpful for the coherence of the generations (in
accordance with Fig. 3 of the RePaint paper). As we use the reverse process for the point positions in the last Nrev steps of
the diffusion process, we do not use resampling in these iterations (second condition in line 15).

Algorithm 1 Appearance-only generation
1: Input: Point Positions P0, Nrev, Nrepaint, Nresample

2: Initialization: ϵP ∼ N (0, I) PT =
√
ᾱTP0 +

√
1− ᾱT ϵP FT ∼ N (0, I)

3: for t = T, . . . , 1 do ▷ we use T = 1000
4: (ϵPθ , ϵFθ ) = Tθ((Pt,Ft), t) ▷ estimate noise with denoiser Tθ

5: Ft−1=
1√
αt

(
Ft− βt√

1−ᾱt
ϵFθ

)
+

1−ᾱt−1

1−ᾱt
βtϵ ϵ∼N (0, I)

6: if t > Nrev then ▷ compute Pt−1 via forward process
7: if t == 1 then
8: Pt−1 = P0

9: else
10: Pt−1 =

√
ᾱt−1P0 +

√
1− ᾱt−1ϵP

11: end if
12: else ▷ compute Pt−1 via reverse process for last Nrev steps

13: Pt−1=
1√
αt

(
Pt− βt√

1−ᾱt
ϵPθ

)
+

1−ᾱt−1

1−ᾱt
βtϵ ϵ∼N (0, I)

14: end if

15: if t ≤ Nrepaint and t ≥ Nrev then ▷ use RePaint-resampling in last Nrepaint steps in case Pt comes from forward process
16: for 1, . . . , Nresample do ▷ resample Nresample times
17: Ft ∼ N (Ft;

√
1− βtFt−1;βtI) ▷ forward process

18: (ϵPθ , ϵFθ ) = Tθ((Pt,Ft), t) ▷ denoise again

19: Ft−1=
1√
αt

(
Ft− βt√

1−ᾱt
ϵFθ

)
+

1−ᾱt−1

1−ᾱt
βtϵ ϵ∼N (0, I)

20: end for
21: end if
22: end for

For all disentanglement figures in the main paper, we use the following parameters:
• Appearance-only SRN chairs / PhotoShape Chairs: Nrev = 15, Nrepaint = 50, Nresample = 10; Mean Runtime for a single

generation (batch size 1) on a RTX 4090 GPU: 11.61 sec
• Appearance-only SRN cars: Nrev = 15, Nrepaint = 80, Nresample = 40; Mean Runtime for a single generation (batch size 1)

on a RTX 4090 GPU: 34.75 sec
• Shape-only SRN chairs / PhotoShape Chairs: Nrev = 50, Nrepaint = 100, Nresample = 2; Mean Runtime for a single

generation (batch size 1) on a RTX 4090 GPU: 9.15 sec
• Shape-only SRN cars: Nrev = 50, Nrepaint = 0, Nresample = 0; Mean Runtime for a single generation (batch size 1) on a

RTX 4090 GPU: 8.85 sec

3



A3. Analysis
As described in the main paper, we conduct ablations studies regarding the effects of different initialization strategies, feature
dimensionality and regularization methods in the category-level Point-NeRF autodecoder and diffusion model. These param-
eters affect both, the quality of the reconstructions and the structure of the neural point cloud feature space. Both properties
in turn affect the diffusion model that is trained on the resulting neural point clouds. As the reconstructed objects serve as
training data for the diffusion model, the reconstruction quality likely is the upper bound of the generation quality. On the
other hand, the structure of the feature space affects how well the data distribution can be learned by the diffusion model.

A3.1. Setup

We conduct the analyses with similar settings as described in the main paper. The main difference is that, for computational
reasons, we conduct the analyses with a smaller transformer denoiser network with 40M parameters. Thus, the numbers of
this configuration might differ from the best configuration in the main paper. At the end of the analysis, we compare this
40M parameter model to the 300M parameter model from the main paper for the best initialization strategy, dimensionality,
and regularization parameters. We conduct the analyses on ShapeNet Cars and Chairs. In case the results on Cars are very
clear, we omit the corresponding experiments on Chairs.

A3.2. Neural point cloud initialization

Regarding the initialization of the neural point cloud features, we analyze initialization with features sampled from a Gaussian
distribution against a zero initialization. Interestingly, we find that these different initializations strongly affect the feature
space of the trained models. To illustrate this, we visualize neural point features of reconstructed objects in Fig. A2.

(a) (b)

Figure A2. The first row shows the Point-NeRF autodecoder renderings of four reconstructed training objects. The second row shows a
visualization of the features from the point clouds by taking the first three PCA components as RGB colors. (a) Random initialization:
The features learned starting from a random initialization are distributed randomly across an object and differ across objects with the same
appearance. (b) Zero initialization: Features learned starting with a zero initialization are coherent within an object and across objects
with the same appearance.

This effect is measured quantitatively via the cosine similarities in Tab. 4 of the main paper. As shown in Fig. A3 and
Tab. A1a, the more coherent features from the zero initialization, are vital to enable the successful training of a diffusion
model.

(a) (b)

Figure A3. Generated samples from diffusion models trained on neural point clouds from category-level Point-NeRF autodecoders that
were optimized with different initialization strategies: (a) Random initialization leads to many artifacts in the appearance of generated
samples. (b) Zero initialization leads to more diversity and fewer artifacts.

4



Setting Dim. Init. Reg. λ ShapeNet SRN Cars ShapeNet SRN Chairs
PSNR↑ FIDrec↓ KIDrec↓ FID↓ KID↓ PSNR↑ FIDrec↓ KIDrec↓ FID↓ KID↓

a) Initialization
Random initialization 32 Rand. ✗ - 29.24 37.24 25.37 125.51 97.82 - - - - -
Zero initialization 32 Zero ✗ - 31.32 18.96 11.17 53.55 35.37 34.91 10.37 4.85 39.19 23.64

b) Dimensionality
16D features 16 Zero ✗ - 30.60 22.56 13.86 56.02 39.30 - - - - -
32D features 32 Zero ✗ - 31.32 18.96 11.17 53.55 35.37 34.91 10.37 4.85 39.19 23.64
128D features 128 Zero ✗ - 32.65 19.33 11.60 73.93 52.09 - - - - -

c) Regularization
No regularization 32 Zero ✗ - 31.32 18.96 11.17 53.55 35.37 34.91 10.37 4.85 39.19 23.64
TV regularization 32 Zero TV 3.5e-6 29.72 22.42 13.71 45.90 28.70 32.38 14.10 6.70 32.87 17.49
KL regularization 32 Zero KL 1e-6 30.02 24.93 15.60 55.01 35.86 34.20 8.37 3.17 18.13 8.17
TV+KL regularization 32 Zero TV,KL 3e-7,1e-7 29.70 26.12 16.44 43.92 26.53 33.62 8.58 3.34 17.17 7.44

d) Model size
40M parameters 32 Zero TV,KL 3e-7,1e-7 29.70 26.12 16.44 43.92 26.53 33.62 8.58 3.34 17.17 7.44
300M parameters 32 Zero TV,KL 3e-7,1e-7 29.70 26.12 16.44 28.38 17.62 33.62 8.58 3.34 9.87 3.62

Table A1. Analysis of the Point-NeRF autodecoder reconstructions and the diffusion model generations regarding: a) feature
initialization, b) feature dimensionality, c) feature regularization (λ is the weight of the regularization loss) and d) model size. The PSNR,
FIDrec and KIDrec metrics in the gray columns measure the quality of the reconstructions in the Point-NeRF autodecoder optimization

stage. The FID and KID metrics measure the quality of the diffusion model generations. The reported KID is multiplied with 103. Zero
initialization clearly outperforms random initialization. 32D features outperform 16D and 128D features. Combined TV+KL regularization
outperforms having no regularization or TV or KL regularization alone.

A3.3. Neural point cloud feature dimension

We analyze 16D, 32D and 128D features for the neural point clouds in Tab. A1b and Fig. A4.

(a) (b) (c)

Figure A4. Generated samples from diffusion models trained on neural point clouds with different numbers of feature dimensions: (a) 16D
features, (b) 32D features, (c) 128D features. We observe a clear difference between 16 and 32D features, while the difference to 128D is
small.

As indicated by the PSNR metrics, higher feature dimensions allow better training data reconstructions in the category-
level Point-NeRF autodecoder training. However, the FID and KID metrics for the generation performance of the diffusion
model decrease for 128D. As the visual quality of 32D and 128D in Fig. A4 is very similar and the FID and KID metrics for
32D are better, we choose to continue with the 32D features.

A3.4. Neural point cloud regularization

As stated in the main paper, we analyze the effects of applying KL and TV regularizations to the neural point features during
the category-level Point-NeRF autodecoder training. The cosine similarities in Tab. 4 of the main paper shows that both
regularizations further decrease the ambiguity of the latent space over the zero initialization. However, we observe different
behaviors w.r.t. quantitative and qualitative results. On the one hand, among TV and KL regularization, TV leads to the better
FID and KID scores in Tab. A1c. The qualitative comparison in Fig. A5 on the other hand shows that KL regularization results

5



in cleaner samples with less artifacts compared to TV regularization. As a consequence, we try a combination of TV and KL
regularization, which leads to an equally high visual quality and the best FID and KID scores.

(a) (b)

(c) (d)

Figure A5. Generated samples from diffusion models trained on neural point clouds from Point-NeRFs that were optimized with different
regularization strategies: (a) No regularization (FID 53.55), (b) TV regularization (FID 45.90), (c) KL regularization (FID 55.01), (d)
TV+KL regularization (FID 43.92). TV regularization increases performance regarding the FID and KID metrics. KL regularization leads
to cleaner qualitative results. The proposed method NPCD uses a combination of both regularizations, which improves quantitative and
qualitative results.

A3.5. Model size

Lastly, we compare the performance of the transformer model with 40M parameters that was used in the analyses, with
the performance of the transformer model with 300M parameters, that was used in the main paper. These models differ as
follows:
• 40M parameter model: 12 layers, hidden dimension 512, 8 heads; trained with batch size 64, learning rate 1e−4, not using

EMA on the model weights.
• 300M parameter model: 24 layers, hidden dimension 1024, 16 heads; trained with batch size 32, a learning rate 7e−5 on

Cars and 4e−5 on Chairs, using EMA on the model weights.

Quantitative Results. The quantitative comparison in Tab. A1d shows that the quality of the generated samples scales with
the model size.

Overfitting. We observed that 3D diffusion models on ShapeNet that achieve good FID scores, often produce samples that
are very similar to specific samples in the training dataset. This is illustrated in Fig. A6, where we show generated samples
and their nearest neighbour training sample for SSDNeRF [3], our 40M parameter model, and our 300M parameter model.

Based on results from diffusion models for other representations (e.g. Point-E for RGB point clouds, StableDiffusion for
images), we expect that given larger datasets and appropriate conditioning mechanisms, the models scale well and are capable
to generate diverse samples that are different from the training data. However, on small scale datasets like ShapeNet, our
conclusion is that FID alone should be taken with a grain of salt.

6



G
en

Tr
ai

n

SSDNeRF (FID: 11.08) Ours, 40M model (FID: 43.92) Ours, 300M model (FID: 28.38)

Figure A6. Analysis regarding similarity between generated objects and objects in the training set for SSDNeRF, our 40M parameter
model, and our 300M parameter model. The top row shows generated samples and the bottom row shows the nearest neighbour sample
in the training dataset. We retrieve the nearest neighbor training object based on the L2 distance between the Inception features of the
generated and training images rendered from the same pose. One can observe that SSDNeRF and our 300M parameter model, which
achieve good FID scores, generate samples that are very similar to specific samples in the training dataset.

Overfitting and disentangled generation. Likewise, in disentangled generation, we observe that models that achieve good
FID scores tend to be more “locked-in”. For example in our appearance-only generation, the denoiser outputs are ignored
for the point positions and instead their trajectory is forced via the forward diffusion process. We observe that this leads to
stronger artifacts for models that achieve better FID scores. To resolve this, for these models, we use a higher number of
resampling steps, which reduces the artifacts, but comes at the cost of longer runtimes. Further, we use a higher Nrev, i.e.
use more steps where the denoiser outputs are used to update the point positions via the reverse process. This reduces the
artifacts, but comes at the cost of stronger deviations from the given input shape.

We demonstrate this in Fig. A7, where we show non-cherrypicked appearance-only generations on SRN cars for our 40M
parameter model and for our 300M parameter model with different disentangled generation parameters. We also observed
that for SRN chairs and PhotoShape chairs, the effect is less pronounced.

(a) (b)

Figure A7. (a) Appearance-only generations on SRN cars for our 40M parameter model with parameters Nrev = 2, Nrepaint = 50,
Nresample = 10. (b) Appearance-only generations for our 300M parameter model. The top block uses the same parameters. One can
observe that for this “more locked-in model”, this results in more artifacts. The middle block increases the number of resampling steps:
Nrev = 2, Nrepaint = 80, Nresample = 40. This reduces artifacts, but comes with longer runtimes. The bottom block increases the number of
final steps Nrev where the point position trajectory is not enforced via the forward process: Nrev = 15, Nrepaint = 80, Nresample = 40. This
basically resolves the artifacts, but the shape of the generated samples deviates more from the input shape.

7



A4. Qualitative results for unconditional generation on ShapeNet Cars
Figure A8 shows unconditional generations of the proposed NPCD model trained on ShapeNet Cars.

Figure A8. Unconditional generations from the proposed NPCD model trained on ShapeNet Cars. Each generated object is visualized
from two different viewpoints. Note that the shown objects are not cherry-picked.

8



A5. Qualitative results for unconditional generation on ShapeNet Chairs
Figure A9 shows unconditional generations from the proposed NPCD model trained on ShapeNet Chairs.

Figure A9. Unconditional generations of the proposed NPCD model trained on ShapeNet Chairs. Each generated object is visualized from
two different viewpoints. Note that the shown objects are not cherry-picked.

9



A6. Baseline details
For our comparisons on ShapeNet Cars, ShapeNet Chairs, and PhotoShape Chairs, we retrain GRAF and Disentangled3D on
these datasets. For training, both approaches require a dataset of images, the distribution of camera poses pξ that correspond
to the images, and a known camera matrix K. Further, the volumetric rendering in both approaches requires given near and
far clipping planes. Training is conducted in a GAN framework. The generator renders images for randomly sampled shape
and appearance latent codes and randomly sampled camera poses. The discriminator compares generated and real images.

ShapeNet Cars. For training on ShapeNet Cars, according to the the SRN rendering parameters, we set the radius to
1.3, the field of view to 52 (chosen such that it results in the correct focal length), and sample camera poses from the full
hemisphere. To define the near and far planes, we compute the cube that bounds all pointclouds. For the Cars training split,
this gives:
• x-coordinate range: −0.30903995 to 0.30898672
• y-coordinate range: −0.48859358 to 0.49043328
• z-coordinate range: −0.27073205 to 0.2709335

The nearest possible point hence has the following distance to the camera:
1.3−

√
0.309039952 + 0.490433282 + 0.27093352 = 1.3− 0.6398714 = 0.6601285815238953.

The furthest point hence has the following distance to the camera: 1.3 + 0.6398714 = 1.9398714184761048.
Based on this, we set the near and far planes to 0.5 and 2.1.

ShapeNet Chairs. For training on ShapeNet Cars, according to the the SRN rendering parameters, we set the radius to
2.0, the field of view to 52 (chosen such that it results in the correct focal length), and sample camera poses from the full
hemisphere. To define the near and far planes, we compute the cube that bounds all pointclouds. For the Chairs training split,
this gives:
• x-coordinate range: −0.5 to 0.5
• x-coordinate range: −0.5 to 0.5
• x-coordinate range: −0.5 to 0.5

The nearest possible point hence has the following distance to the camera: 2.0−
√
0.52 + 0.52 + 0.52 = 2.0−0.87 = 1.13.

The furthest point hence has the following distance to the camera: 2.+ 0.87 = 2.87.
Based on this, we set the near and far planes to 1.0 and 3.0.

PhotoShape Chairs. For training on PhotoShape Chairs, according to the PhotoShape Chairs rendering parameters, we
set the radius to 2.5 and the field of view to 39.6 (chosen such that it results in the correct focal length). As PhotoShape
Chairs views were always rendered from the same set of camera poses, we randomly sample poses from this discrete set
during training. As the 3D object shapes are the same as on ShapeNet Chairs, we compute the near and far clipping planes
comparably to ShapeNet Chairs. Given the different radius, this results in near and far planes of 1.25 and 3.75.

10



A7. Comparison to a Combination of Shape and Texture Generation
Recently, multiple works applied diffusion models for 3D shape generation [6, 10, 11, 13, 14] and for the generation of
textures for a given 3D mesh [1, 2, 12]. Combining the two approaches, allows generating a shape, followed by generation of
different appearances. For completeness, in the following, we conduct a comparison to such a combination. However, please
note that separate 3D shape and texture generation differs strongly in concept from our work and has different assumptions
and results: (1) with separate generation it is only possible to re-generate the appearance for a given shape, but not vice-versa.
(2) SOTA texture generation approaches use test-time optimization with score distillation from a 2D diffusion model, which
results in generation times in the order of minutes (we measure 9 minutes for Text2Tex), where our method takes only a few
seconds to generate a sample and is thus orders of magnitude faster. (3) Both approaches differ strongly in terms of training
data: our model uses a rather small dataset of 3D objects (a few thousand), whereas Text2Tex builds on a diffusion model
trained on large scale image data (on the order of billions).

Despite these fundamental differences, we provide a comparison between our method and the mentioned “Locally At-
tentional SDF Diffusion” plus “Text2Tex” models (running their code as it is on Github) below. The following shows four
resulting appearance-only generations for text prompts “a <black/red/green/blue> chair” in comparison to a
sample from our method with resampled appearance:

L
A

S→
T

2T
(9

m
in

)
O

ur
s

(1
1.

6
se

c)

Figure A10. Comparison of our model and a combination of Locally Attentional SDF Diffusion [14] plus Text2Tex [2].

It can be seen that our method finds a good trade-off between quality and generation time. In general, we think that both,
generative modeling on 3D representations and generative modeling on 2D images plus score distillation, are interesting
research directions, but have different advantages and disadvantages.

References
[1] Tianshi Cao, Karsten Kreis, Sanja Fidler, Nicholas Sharp, and KangXue Yin. Texfusion: Synthesizing 3d textures with text-guided

image diffusion models. In ICCV, 2023. 11
[2] Dave Zhenyu Chen, Yawar Siddiqui, Hsin-Ying Lee, Sergey Tulyakov, and Matthias Nießner. Text2tex: Text-driven texture synthesis

via diffusion models. In ICCV, 2023. 11
[3] Hansheng Chen, Jiatao Gu, Anpei Chen, Wei Tian, Zhuowen Tu, Lingjie Liu, and Hao Su. Single-stage diffusion nerf: A unified

approach to 3d generation and reconstruction. In ICCV, 2023. 6
[4] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and memory-efficient exact attention

with IO-awareness. In NeurIPS, 2022. 2
[5] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS, 2020. 2
[6] Muheng Li, Yueqi Duan, Jie Zhou, and Jiwen Lu. Diffusion-sdf: Text-to-shape via voxelized diffusion. In CVPR, 2023. 11
[7] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool. RePaint: Inpainting using

denoising diffusion probabilistic models. In CVPR, 2022. 2
[8] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen. Point-E: A system for generating 3d point clouds

from complex prompts. arXiv:2212.08751, 2022. 2
[9] William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, 2023. 2

[10] Jaehyeok Shim, Changwoo Kang, and Kyungdon Joo. Diffusion-based signed distance fields for 3d shape generation. In CVPR,
2023. 11

[11] J. Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner, Jiajun Wu, and Gordon Wetzstein. 3d neural field generation using triplane
diffusion. In CVPR, 2023. 11

[12] Kim Youwang, Tae-Hyun Oh, and Gerard Pons-Moll. Paint-it: Text-to-texture synthesis via deep convolutional texture map opti-
mization and physically-based rendering. In CVPR, 2024. 11

11

https://arxiv.org/abs/2212.08751


[13] Biao Zhang, Jiapeng Tang, Matthias Niessner, and Peter Wonka. 3dshape2vecset: A 3d shape representation for neural fields and
generative diffusion models. ACM TOG, 2023. 11

[14] Xin-Yang Zheng, Hao Pan, Peng-Shuai Wang, Xin Tong, Yang Liu, and Heung-Yeung Shum. Locally attentional sdf diffusion for
controllable 3d shape generation. ACM TOG, 2023. 11

12


	. Visualization of the neural point cloud diffusion process
	. Implementation details
	. Category-Level Point-NeRF Autodecoder
	. Diffusion model
	. Disentangled generation

	. Analysis
	. Setup
	. Neural point cloud initialization
	. Neural point cloud feature dimension
	. Neural point cloud regularization
	. Model size

	. Qualitative results for unconditional generation on ShapeNet Cars
	. Qualitative results for unconditional generation on ShapeNet Chairs
	. Baseline details
	. Comparison to a Combination of Shape and Texture Generation

