
SeMoLi: What Moves Together Belongs Together
Supplementary Material

Jenny Seidenschwarz1,2 Aljoša Ošep2 Franceso Ferroni2 Simon Lucey3 Laura Leal-Taixé2

1Technical University of Munich 2NVIDIA 3University of Adelaide

Abstract

In this appendix we first discuss limitations as well as
computational costs in Sec. 1, detail the datasets we eval-
uate SeMoLi on in Sec. 2, as well as the computation of
our SegIoU metric in Sec. 3. We then detail our point cloud
filtering as well as the impact on SeMoLi’s performance
in Sec. 4 and give a deeper analysis of our graph construc-
tion approaches in Sec. 5. Afterwards, we give deeper in-
sights on our cluster post-processing with correlation clus-
tering Sec. 6, bounding box extraction Sec. 7, as well as
bounding box inflation Sec. 8. We compare the latter with
the registration introduced in [8] in Sec. 9 and give details
on our implementation of [8] in Sec. 10. Then, we detail
the training of SeMoLi in Sec. 11 and PointPillars (PP)
in Sec. 12, followed by a deeper discussion on the perfor-
mance PP trained with different pseudo-labels in Sec. 13.

1. Limitations and Computational Cost.
Since SeMoLi relies on pre-processed point clouds and
predicted motion as input, the quality of both influences
the final performance (see Sec. 4 of supplementary and Tab.
3 of the main paper). For SeMoLi itself we observe two
main limitations. (i) Our focus on close, moving PL intro-
duces a bias to PointPillars towards regions where typically
moving objects are found which leads to a lower recall (see
Tab. 6 All vs. Moving) since during training correct predic-
tions for which no pseudo-labels exist are penalized. This
could be addressed by data augmentation. (ii) SeMoLi is
based on learning to group points, and deriving enclosing
modal boxes. Hence, this is different to the amodal ground
truth bounding boxes of the datasets under investigation and
leads to PointPillars predicting too tight bounding boxes.
This issue is especially notable for strict evaluation thresh-
olds (see @0.7 Tab. 6 in the main paper) and large objects
(see Tab. 4 and 5 in the main paper). It could be addressed
by utilizing sequential data to obtain amodal estimates as in

∗ Correspondence to j.seidenschwarz@tum.de.

[8, 11]. However, we observed that especially the approach
of [8] suffers from point cloud pre-processing and the qual-
ity of the predicted motion (see Sec. 9 of supplementary).

Computational costs: Especially per-timestamp motion op-
timization (∼7 min, 12GB GPU) increases computational
costs. Recently, faster self-supervised methods like [6] al-
low for speed-ups. To train SeMoLi, a single 32GB GPU
suffices due to the enormous PC reduction during filtering.
For PointPillars we utilize 8x16GB GPUs.

2. Dataset details
As intoduced in Sec. 4.1 of the main paper, we ablate
and evaluate our method using the large-scale Waymo Open
dataset [9] and only utilize Lidar sensory data. The dataset
consists of 6.4 hrs of calibrated image and Lidar sensory
data, recorded at 10 Hz in Phoenix, San Francisco, and
Mountain View.

Additionally, we assess the generalization of our method
on Argoverse2 dataset [10] recorded at 10 Hz in six U.S.
cities, namely Austin, Detroit, Miami, Pittsburgh, Palo
Alto, and Washington, D.C. Argoverse2 provides signifi-
cantly finer-grained semantic labels (30 object classes). In
Tab. 5 of the main paper we show the performance on
those classes that occur as moving objects in our val gnn
dataset of Argoverse2.

Waymo Open dataset and Argoverse2 were recorded
with different types of (proprietary) Lidar sensors. While
Argoverse2 dataset was recorded with two roof-mounted
VLP-32C Lidar sensors, i.e., 64 beams in total, Waymo
Open dataset was recorded with five Lidar sensors – one
mid-range Lidar (top) and four short-range Lidar sensors
(front, side left, side right, and rear). This leads to a denser
representation in close-range. We show in our experiments,
that despite the representations being different SeMoLi is
able to generalize between the datasets.

3. SegIoU Computation
To compute our SegIoU metrics, in each frame we utilize
the extracted pseudo-label bounding boxes bc ∈ Bc as well

as the ground truth bounding boxes gc ∈ Gc to find their
interior points in the filtered point cloud P̃ ∈ RM×3. This
leaves us with binary instance segmentation masks IG ∈
RM×|Gc| and IB ∈ RM×|Bc| for ground truth and pseudo-
label bounding boxes, respectively, where the masks indi-
cate point membership to a bounding box. Finally, we com-
pute the intersection over union between IB and IG to ob-
tain out SegIoU matrix S ∈ R|Bc|×|Gc|.

4. Point Cloud Filtering
In this section, we specify the point cloud filtering we apply
before predicting point trajectories introduced in Sec. 3.1.1
of the main paper. We then discuss its impact on SeMoLi’s
performance as well as the amodal and modal oracle perfor-
mance we can obtain with the filtered point cloud.

Details on Point Cloud Filtering. We follow a similar
filtering pipeline as [8], where we compute an approximate
velocity magnitude for each point via Chamfer Distance be-
tween a point cloud at timestamp t and t + 4 where the
point clouds are ego-motion-compensated. We then filter
points with |vti | < 0.2m/s. We also remove ground points
utilizing a ground plane fitting algorithm [5] and only re-
tain points within a range of 80m around the ego vehicle
and lower than 4m. On Waymo Open dataset the average
full point cloud has 175000 points while the average filtered
point cloud has 10500 points.

Impact on SeMoLi’s Performance. The point cloud fil-
tering step is delicate: it impacts the quality of the estimated
point trajectories τi – the more stationary points we filter,
the better the point trajectories. On the other hand, by re-
moving too many non-stationary points we may filter out
several moving instances and hamper recall. The quality of
filtering static points can be measured by precision and re-
call, where a true positive is defined as a static point that
we successfully remove, while a false positive is a mov-
ing point that we accidentially remove. As in [8] we define
static points as points with a ground truth velocity < 1m/s.
Despite closely following the point cloud filtering in [8],
with additional feedback of the authors, we were not able
to achieve the recall and precision given in [8] – they report
precision and recall of 97.2% and 62.2% while we achieve
88.3% and 97.5%. This leaves us with a more noisy point
cloud than used in [8], where more moving points are fil-
tered out and more static points kept.

Amodal Oracle Performance of SeMoLi In Tab. 1 we
discuss the number of static and moving ground truth
bounding boxes before (original) and after (filtered) point
cloud filtering with ≥ xf interior points in the rectan-
gular region of 100x40m around the ego vehicle on the
val pseudo dataset. We observe that a certain amount
of ground truth bounding boxes already have no interior
points even in the original point cloud (see difference be-

static objects moving objects
Interior original filtered original filtered

xf = 0 100 100 100 100
xf = 1 97.8 71.1 96.3 95.4
xf = 10 94.9 21.8 92.4 90.4
xf = 30 89.5 9.7 84.3 79.5
xf = 50 82.6 6.3 76.2 67.7

Table 1. Point cloud filtering. In the pre-filtering step, we re-
move points that appear static. We report the percentage of labeled
bounding boxes that have more ≥ xf interior before and after fil-
tering. A few observations: (i) even when not filtering the point
cloud, a certain percentage of boxes have no interior points; those
are probably occluded and extrapolated. (ii) filtering causes a big
drop for static objects, as expected. (iii) after filtering we retain
a high number of boxes of moving objects: 90% with at least 10
points, and 67% with at least 50. Those are those that we can ob-
tain in the pseudo-labeling process.

tween xf = 0 and xf = 1). After filtering, the percentage
of static objects is significantly reduced, at the cost of losing
some moving objects. However, we retain a high number of
boxes of moving objects, e.g., 90% with at least 10 points,
and 67% with at least 50. This amount of moving objects
present in the filtered point cloud determines the amodal
upper performance bound, i.e., the quality upper bound of
our pseudo-labels.

Modal Oracle Performance of SeMoLi. However, our
pseudo-labels are modal, i.e., the extent of the bounding
boxes is defined by the smallest enclosing cuboid around
the points present in the filtered point cloud. To obtain a
modal upper bound, we compute an Oracle performance
where we assign each point its ground truth identity and
extract bounding boxes given those ground truth identities.
This gives us the performance we would obtain if SeMoLi
would be able to segment all points correctly. In Tab. 2
we report this oracle performance utilizing SegIoU- and
3DIoU-based evaluation if we discard segments with ≤ xf

interior points. We see that SegIoU performance corre-
sponds to the amodal upper bound – the slight differences
are caused by our bounding box extraction. 3DIoU-based
performance shows that even if SeMoLi would segment a
given point cloud perfectly, comparing our modal bounding
boxes to amodal ground truth bounding boxes would lead
to a heavy drop in performance compared to amodal oracle
performance. We further observe, the larger xf gets, the
lower the recall but the higher the precision and F1 score.
This means, that if SeMoLi would wrongly classify edges
of clusters with a small amount of interior points as negative
classes, 3DIoU-based performance would increase. Hence,
SegIoU is better suited than 3DIoU to evaluate the clus-
tering quality of SeMoLi and we only use 3DIoU-based
evaluation to evaluate the final pseudo-label quality and PP
performance.

SegIoU 3DIoU
Method Pr 0.4 Re 0.4 F1 0.4 Pr 0.4 Re 0.4 F1 0.4

xf = 2 95.1 94.8 95.0 40.6 40.6 40.6
xf = 30 97.9 81.2 88.8 48.8 40.4 44.2
xf = 50 98.1 68.8 80.8 56.5 39.6 46.6

Table 2. SeMoLi 10 ablation modal upper bound: We report
upper bound via oracle, i.e., the achievable performance with seg-
ments with at least xf interior points from GT labels.

Method Pr 0.7 Re 0.7 F1 0.7 Pr 0.4 Re 0.4 F1 0.4

Oracle Velocity kNN 35.7 67.1 46.6 39.4 74.1 51.4
Oracle Position kNN 85.0 87.9 86.4 89.4 92.5 90.9

Velocity kNN 35.9 41.7 38.6 45.6 52.9 49.0
Position kNN 63.3 53.0 57.7 77.9 65.1 70.9

Table 3. SeMoLi 10 ablation graph construction (SegIoU):
We discuss the oracle performance of SeMoLi utilizing different
strategies on graph construction as well as the performance when
utilizing those strategies for training.

5. Deeper analysis of our graph construction
In the main paper, we report the oracle performance, i.e.,
the maximum achievable performance given an underlying
graph construction strategy when utilizing a kNN graph in
Tab. 1. We showed, that the oracle performance of position-
based kNN-graph construction is significantly higher than
the oracle performance when utilizing velocity. In this sec-
tion, we discuss those results more in detail as well as the
performance when training SeMoLi on the different graph
construction approaches.

Oracle Graph Construction Performance. For velocity-
based graph construction, closest points can be situated any-
where in space (see also Fig 1b) which leads to several neg-
ative edges being added to the graph. This is mirrored in
the low performance in recall, i.e., many false negative seg-
ments, as well as precision, i.e., many false positive seg-
ments as reported in Tab. 1 in the main paper. Utilizing po-
sition as an initial inductive bias assures that close-by points
are considered first as belonging to the same object (see
Fig 1a). Hence, computing the oracle performance leads
to significantly better performance.

SeMoLi’s Graph Construction Performance. Remark-
ably, utilizing velocity as a graph construction method for
SeMoLi leads to a higher precision than when computing
the oracle performance (see Tab. 3). This seems counter-
intuitive since the oracle performance should lead to the
best possible performance achievable. However, the ora-
cle approach leads to scattered objects and more false pos-
itive pseudo-labels due to the edge hypothesis’ connecting
distant points and not connecting close points. During the
learning process, SeMoLi fails to correctly classify edges
of heavily scattered objects leading to them being discarded
due to being singleton points or being filtered out by the size

(a) Position-based construction. (b) Velocity-based construction.

Figure 1. Comparison of different graph construction ap-
proaches: We compare three different graph construction ap-
proaches as initial hypothesis for SeMoLi: position-based,
velocity-based and a combination of both, where we first build
a graph based on position and then cut edges if node velocities are
highly different. Blue points represent nodes i.e. points in the point
cloud, edges the initial hypothesis of connection to be refined by
our GNN. Position-based graph construction utilizes the inductive-
bias of proximity, velocity-based hypothesis yields edges spanning
the entire scene since points can potentially have a similar velocity
if they are are far in space.

filter (any dimension < 0.1m). This in turn leads to less
false positive predictions hence a higher precision but also
a lower recall. Since (i) this behavior is not desirable during
our learning process and (ii) the performance is still sig-
nificantly worse than when utilizing position-based graph
construction, we utilized the latter.

6. Cluster Postprocessing

As introduced in Sec. 3.1.2 in the main paper, we obtain
edge scores h̃

(L)
i,j for our edges from a binary classifier on

the edge features after the last layer. We cut negative edges,
i.e., edges for which we predict h̃(L)

i,j < 0.5. Then, we re-
move singleton nodes and apply correlation clustering on
the remaining node and edge set utilizing our edge scores
as edge weights. For correlation clustering, we utilize the
implementation of [1] with default settings.

7. Bounding Box Extraction

As mentioned in Sec. 3.1.1 of the main paper, we discard
singleton nodes that are left without edges after our clus-
ter postprocessing and correlation clustering. Additionally
to the bounding box extraction defined in Sec. 3.2 of the
main paper, we discard bounding boxes where either of the
dimensions is < 0.1m.

8. Bounding Box Inflation

SeMoLi generates compact, modal bounding boxes that
are tightly fitted around the clustered points by extracting
to smallest enclosing cuboid. Due to point cloud filtering

Figure 2. Visualizations of Pedestrian Boudning Boxes: We
show visualizations of pedestrian clusters in our filtered point
cloud, our extracted bounding boxes (red) as well as ground
truth bounding boxes (green). We can see, that SeMoLi clusters
points correctly, but the extracted bounding boxes are significantly
smaller than their corresponding ground truth bounding boxes.

and possibly wrongly filtering moving points, pseudo la-
bels are more compact when extracted on the filtered point
cloud. However, ground truth bounding boxes are amodal
representations of the objects and typically more loosely
placed around the object. This leads to the fact that despite
SeMoLi clustering points correctly, our extracted pseudo-
labels are not considered as true positives. Particularly for
pedestrians, we observed our pseudo-labels being perfectly
fit around the points but being considered as false positive
detections. We show several visualizations in Fig. 2 where
green represents ground truth bounding boxes and red our
pseudo-labels fitted around a point cluster of the filtered
point cloud.

To enhance our pseudo-labels to correspond to the under-
lying ground truth data to train the detector, we inflate our
bounding boxes to have a minimum size of (1m, 1m, 2m)
for Waymo Open dataset and (0.75m, 0.75m, 1.75m) for
Argoverse2. We show the impact on the performance on
Waymo Open Dataset in Tab. 2 of the main paper. The per-
formance evaluation based on SegIoU does not change sig-
nificantly indicating that SeMoLi clusters points correctly.
When evaluating on 3DIoU, our simple bounding box infla-
tion leads to a drastic performance increase indicating the
better correspondence.

9. Registration
For a fair comparison with our baseline DBSCAN++† [8],
we also implemented the registration [3] algorithm provided
in the paper. The authors state that they track bounding
boxes with a BEV IoU threshold of 0.1, i.e., a small over-
lap is enough for two bounding boxes to be matched to-
gether. Then they register bounding boxes over all tracks
to obtain a more complete representation of the underlying
object. Contrary to the performance reported in [8], adding
registration to our pipeline worsened our performance (see
Tab. 4). We assume that this is due to our more noisy
point cloud filtering. As soon as one detection in a track
is noisy, due to the registration all bounding boxes in a
track will be noisy. We also show the performance of our
best registration setting, where we: (i) utilize a threshold of
0.5, (ii) only apply constrained ICP to obtain transforma-
tions between detections but propagate the dimensions of

3DIoU SegIoU
Pr 0.4 Re 0.4 F1 0.4 Pr 0.4 Re 0.4 F1 0.4

Initial 33.2 27.8 30.3 77.9 65.1 70.9
Registration as in [8] 2.1 0.9 1.2 20.5 8.6 12.2
Our best Registration 21.0 15.0 17.5 67.8 48.4 56.5
Inflated 59.1 48.3 53.1 80.9 66.2 72.8

Table 4. Registration: We implement constrained ICP [3] for
bounding box amodalization as in [8]. Due to our more noisy point
cloud and trajectory predictions we are not able to improve our
performance. However, simple bounding box inflation leads to a
significant performance improvement.

Pr 0.7 Re 0.7 F1 0.7 Pr 0.4 Re 0.4 F1 0.4

Re-implementation as in [8] 0.4 5.2 0.7 2.8 37.7 5.3
Adapted re-implementation 1.6 6.2 2.5 10.2 40.3 16.2

Table 5. Comparison of DBSCAN++† with and without min-
imum number of points per cluster: We compare the perfor-
mance of the re-implementation of our baseline DBSCAN++† as
described in [8] where clusters are allowed to contain only one
point. In our adapted re-implementation we define the minimum
number of points per cluster for position- as well as scene flow-
based clusterings as 10 and the minimum number of samples of
their intersection as 20.

the most dense point cloud, (iii) only apply constrained ICP
on clusters with more than 50 points and tracks with a length
≥ 5. However this also does not improve our performance.
Hence, we rely on bounding box inflation as our only post-
processing step due to its simplicity and high efectiveness.

10. Details DBSCAN and DBSCAN++ re-
implementation

For the vanilla DBSCAN baseline based on solely position,
we set ϵ = 1 and the minimum number of samples per clus-
ter to 10. As introduced in the main paper, we also com-
pare our approach to the DBSCAN++ approach introduced
in [8]. Unfortunately, we were not able to access the im-
plementation as well as the scene flow used and, therefore,
report our best re-implementation. To be specific, we apply
a DBSCAN clustering on the spatial positions of points in
the point cloud and on the scene flow that we extract from
our predicted trajectories. Then we utilize the intersection
of both to obtain the final clusters. We follow [8] and set
ϵpos = 1 and ϵflow = 0.1. To filter out noise, we define the
minimum number of samples per cluster to 10 for both and
to 20 for the intersection. Allowing any number of interior
points, i.e., also clusters with a single interior point leads
to a significant drop in precision and F1 score – from 10.2
to 2.8 and from 16.2 to 5.3 for T = 0.4 on Waymo Open
dataset (see Tab. 5). Since no minimum number of samples
is mentioned in [8], we assume that either the point cloud
filtering or the scene flow prediction were cleaner to begin
with.

generate input graph
with hi

(0) and hij
(0)

edge update
input: [hi

(l-1), hj
(l-1), eij

(l-1)]

focal loss on eij
(L):

active / not active

input per point:
spatial position pi ∈ R3

velocity vi ∈ R24x3

trajectories 𝜏i ∈ R25x3

message computation
input: [ni

(l-1), nj
(l-1), eij

(l)]

node update

M
PN

 la
ye

r
remove edges to

nodes with low score

correlation clustering
with edge scores

de
te

ct
io

n
ex

tr
ac

tio
n

final clusters cc with �̂�! :
extract tc, lwhc, 𝛼c

get detections:
bc = [tc, lwhc, 𝛼c]

ev
al

ua
tio

n

training

Figure 3. Overview MPN during training and evaluation: We
visualize our MPN. It takes as input points from a point cloud with
their corresponding spatial positions pi, trajectory ti, and veloci-
ties along the trajectory vi. We then extract initial node and edge
features h

(0)
i and h

(0)
ij , apply L MPN layers and for training ap-

ply focal loss on the final edge features h(L)
ij . During Evaluation,

we prune edges based on the final edge scores, apply correlation
clustering on the remaining, and extract bounding boxes bc with
translation tc, dimensions lwhc, and heading in xy-direction αc.

11. SeMoLi training.
In this section, we detail the training of SeMoLi. As su-
pervisory signal, we define edges as positive, if the two
connected nodes belong to the same moving object. Ev-
ery other edge we consider as negative. This leaves us with
the vast majority of edges being negative. Hence, we use
the focal loss function [7], well-suited for our imbalanced
binary edge classification objective. For optimization, we
use Adam optimizer [4] and step learning rate schedule with
step size 15 and gamma value 0.7 for 30 epochs, batch size
of 4 and a base learning rate of 0.003. We apply dense su-
pervision, i.e., we apply the loss function after each layer of
the MPN and to all edges.

12. PointPillars Detector Training and Anchor
Bounding Boxes

For our detector training on Waymo Open dataset as well as
Argoverse2, we utilize the default implementation and pa-
rameters for PointPillars training on Waymo Open dataset
of [2]. To be specific, we train for 24 epochs with a base
learning rate of 0.001 and a batch size of 32. We apply a
combination of linear and step learning rate decay. For aug-
mentation, we utilize random horizontal and vertical flip,
global rotation and scaling as well as point shuffling. We
only load every 5-th frame. For the Waymo Open dataset
we utilize spatial position, intensity, and elongation as input
while for Argoverse2 we only use the first two since elon-
gation is not provided.

To account for different object sizes we utilize three dif-
ferent anchor bounding box sizes on Waymo Open dataset:
(4.75, 2.0, 1.75), (0.9, 0.85, 1.75) and (1.8, 0.85, 1.75).
Due to the more diverse classes on Argoverse2 dataset,

we utilize also a more diverse set of anchor bounding
boxes: (0.75, 0.75, 0.75), (1.5, 0.75, 1.5), (4.5, 2, 1.5),
(6.0, 2.5, 2), (9.0, 3.0, 3.0), and (13.0, 3.0, 3.5). We obtain
those utilizing k-means algorithm on the val gnn dataset.

13. PP Performance with different percentages
of pseudo and labeled data

In this section, we detail PointPillars (PP) performance on
different percentages of labeled and pseudo-labeled data
(see Tab. 6). For this we compare different versions of
SeMoLi, i.e., SeMoLi 10, SeMoLi 50, and SeMoLi 90

with DBSCAN++† and our baselines trained on ground
truth data.

Comparison of Different Versions of SeMoLi. We first
compare the PP performance obtained when utilizing the
different versions of SeMoLi but the same data set split
of pseudo-labeled data. To be specific, we utilize the
train detector set containing 10% of our training data
(please refer to Fig. 3 of the main paper for split definition).

Evaluation on static and moving objects. In Tab. 6 we show
that the overall performance of SeMoLi 10 falls behind the
two other versions. This shows that more training data in-
deed improves the performance of SeMoLi. However, a
training split larger than x = 50% does not seem to improve
the overall performance further when evaluating the perfor-
mance with T = 0.4. For the more strict threshold evalua-
tion of T = 0.7, we can observe slightly favorable behavior
of SeMoLi 90. Interestingly, the precision of SeMoLi 50

falls behind the other models.

Evaluation on moving objects. The same observations hold
when evaluating on moving objects only with all observa-
tions being more distinct. This shows that SeMoLi only
extracts moving objects.

Training without Labeled Data. We compare the per-
formance when we train PP with pseudo-labels generated
using DBSCAN++† and the different versions of SeMoLi
on different amounts of pseudo-labeled data.

Evaluation on static and moving objects. Interestingly,
for SeMoLi as well as for DBSCAN++† without labeled
data, the best performance is achieved utilizing 50% of the
pseudo-labeled data. Precision as well as recall are al-
ways similar forDBSCAN++† with a constantly low pre-
cision. This indicates that the noisy training signal leads
to PP predicting a large number of false positive bound-
ing boxes. Pseudo-labels generated by SeMoLi lead to
increased precision as we increase the amount of pseudo-
labeled data mirroring the high pseudo-label quality. How-
ever, recall drops which indicates that pseudo-labels gen-
erated by SeMoLi indeed focus on moving objects. The
higher the ratio of moving objects PP obtains as supervi-
sory signal the less static objects it will predict.

Evaluation on moving objects. On moving objects only,
the performance of DBSCAN++† when utilizing only 10%
pseudo-labeled data is significantly worse than the perfor-
mances utilizing 50%, 90% or 100% which are relatively
stable. This indicates that DBSCAN++† pseudo-labels in
general contain many noisy pseudo labels not belonging to
moving objects and that the amount of moving objects is
not enough in the 10% split. Afterwards the DBSCAN++†

pseudo-labels with low singal-to-noise ratio do not add to
the training signal. For SeMoLi, we again observe a con-
stant increase of precision the more pseudo-labeled data
we utilize, indicating that the overall higher quality of the
bounding boxes can be transferred to training PP.

Training with Labeled Data. Finally, we compare the
performance when we train PP on a combination of labeled
data and pseudo-labeled data generated using DBSCAN++†

and the different versions of SeMoLi on different data
splits.

Evaluation on static and moving objects. SeMoLi prof-
its significantly more from adding labeled data to PP train-
ing with respect to precision than DBSCAN++†. This in-
dicates that the pseudo-labels generated by DBSCAN++†

hamper the prediction of precise pseudo labels compared
to when using SeMoLi’s pseudo-labels. This hypothesis is
supported by the fact that the precision using DBSCAN++†

does not significantly change depending on the amount
of labeled data, while SeMoLi shows the highest preci-
sion when using the largest amount of labeled data. Since
DBSCAN++† generates noisy pseudo-labels with many
predictions not belonging to moving objects, the recall is
highly similar to the recall when utilizing SeMoLi. This
leads to an overall not significantly worse AP value of
DBSCAN++†.

Evaluation on moving objects. Evaluating on moving ob-
jects only leads to similar observations, except that the re-
call when utilizing SeMoLi’s pseudo-labels is higher com-
pared to when utilizing DBSCAN++† pseudo-labels. This
again indicates that indeed SeMoLi’s pseudo-labels focus
on moving objects while DBSCAN++†’s pseudo-labels also
contain many pseudo-labels not belonging to moving ob-
jects – the vast majority belonging to noise.

References
[1] Ahmed Abbas and Paul Swoboda. Rama: A rapid multicut

algorithm on gpu. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
8193–8202, 2022. 3

[2] MMDetection3D Contributors. MMDetection3D: Open-
MMLab next-generation platform for general 3D object
detection. https://github.com/open-mmlab/
mmdetection3d, 2020. 5

[3] Johannes Groß, Aljoša Ošep, and Bastian Leibe. Alignnet-
3d: Fast point cloud registration of partially observed ob-
jects. In 3DV, 2019. 4

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. 2015. 5

[5] Seungjae Lee, Hyungtae Lim, and Hyun Myung. Patch-
work++: Fast and robust ground segmentation solving partial
under-segmentation using 3d point cloud. In IROS, 2022. 2

[6] Xueqian Li, Jianqiao Zheng, Francesco Ferroni, Jhony Kae-
semodel Pontes, and Simon Lucey. Fast neural scene flow.
In ICCV, 2023. 1

[7] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 5

[8] Mahyar Najibi, Jingwei Ji, Yin Zhou, Charles R Qi,
Xinchen Yan, Scott Ettinger, and Dragomir Anguelov. Mo-
tion inspired unsupervised perception and prediction in au-
tonomous driving. In ECCV, 2022. 1, 2, 4, 7

[9] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In CVPR,
2020. 1

[10] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lam-
bert, Jagjeet Singh, Siddhesh Khandelwal, Bowen Pan, Rat-
nesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes,
Deva Ramanan, Peter Carr, and James Hays. Argoverse 2:
Next generation datasets for self-driving perception and fore-
casting. In Adv. Neural Inform. Process. Syst., 2021. 1

[11] Lunjun Zhang, Anqi Joyce Yang, Yuwen Xiong, Sergio
Casas, Bin Yang, Mengye Ren, and Raquel Urtasun. To-
wards unsupervised object detection from lidar point clouds.
In CVPR, 2023. 1

% Pseudo % GT Pr 0.7 Re 0.7 AP 0.7 mAP 0.7 Pr 0.4 Re 0.4 AP 0.4 mAP 0.4

A
ll

(M
ov

.+
st

at
.)

Ground Truth Baselines
Stat. + Mov., class-specific 0 100 35.5 55.5 – 37.1 69.7 44.6 – 80.3
Stat. + Mov., class-agnostic 0 100 31.8 41.2 36.1 – 51.2 66.5 64.7 –
Mov-only, class agnostic 0 100 34.4 19.9 15.1 – 63.9 37.1 35.0 –

Different versions of SeMoLi
SeMoLi 90 10 0 3.1 3.2 1.5 – 24.0 24.8 19.6 –
SeMoLi 50 10 0 2.8 3.7 1.9 – 21.1 27.7 21.8 –
SeMoLi 10 10 0 3.1 3.8 1.9 – 22.8 27.3 21.7 –

Training with pseudo-labeled data only
DBSCAN++† 10 0 0.6 3.0 0.8 – 5.1 26.0 14.2 –
DBSCAN++† 50 0 0.7 3.0 0.7 – 5.8 25.9 15.3 –
DBSCAN++† 90 0 0.7 3.2 1.2 – 5.8 25.2 14.7 –
DBSCAN++† 100 0 0.8 3.4 0.8 – 5.9 25.9 14.9 –
SeMoLi 90 10 0 3.0 3.8 1.8 – 21.6 27.6 21.5 –
SeMoLi 50 50 0 3.7 4.1 2.0 – 24.6 27.6 22.6 –
SeMoLi 10 90 0 3.8 3.4 1.8 – 26.9 24.1 19.5 –

Training with pseudo-labeled and labeled data
DBSCAN++† 10 90 7.2 35.2 31.3 – 11.4 55.2 52.2 –
DBSCAN++† 50 50 6.9 35.1 31.2 – 10.9 54.9 51.7 –
DBSCAN++† 90 10 7.4 35.1 31.1 – 11.5 55.0 52.0 –
SeMoLi 90 10 90 49.0 35.8 32.4 – 70.5 51.5 50.4 –
SeMoLi 50 50 50 29.4 36.0 32.3 – 46.9 57.4 55.0 –
SeMoLi 10 90 10 25.4 35.4 31.8 – 40.7 56.8 54.6 –

M
ov

in
g

on
ly

Ground Truth Baselines
Stat. + Mov., class-specific 0 100 30.5 34.5 – 43.2 36.4 41.1 – 85.6
Stat. + Mov., class-agnostic 0 100 16.1 52.8 44.8 – 28.1 92.4 88.7 –
Mov-only, class agnostic 0 100 33.9 53.7 44.3 – 57.6 91.2 89.0 –

Different versions of SeMoLi
SeMoLi 90 10 0 2.9 9.6 3.4 – 19.4 64.2 54.3 –
SeMoLi 50 10 0 2.6 11.0 4.4 – 16.1 68.3 59.2 –
SeMoLi 10 10 0 2.8 10.6 4.5 – 17.6 67.4 58.5 –

Training with pseudo-labeled data only
DBSCAN++† 10 0 0.5 8.7 2.4 – 3.0 56.4 39.7 –
DBSCAN++† 50 0 0.6 9.2 2.1 – 3.5 58.7 44.2 –
DBSCAN++† 90 0 0.6 9.5 1.1 – 3.6 58.4 43.5 –
DBSCAN++† 100 0 5.9 9.7 2.4 – 3.6 58.6 43.2 –
SeMoLi 90 10 0 2.6 10.7 4.3 – 17.6 67.7 58.5 –
SeMoLi 50 50 0 3.4 12.1 4.8 – 19.7 69.9 62.7 –
SeMoLi 10 90 0 3.8 10.7 4.2 – 23.3 66.0 57.5 –

Training with pseudo-labeled and labeled data
DBSCAN++† 10 90 2.0 34.5 30.1 – 4.0 70.5 61.6 –
DBSCAN++† 50 50 1.9 34.3 29.6 – 3.8 70.2 60.2 –
DBSCAN++† 90 10 2.0 34.5 29.8 – 4.1 70.1 61.0 –
SeMoLi 90 10 90 26.2 35.4 32.3 – 45.5 61.4 53.3 –
SeMoLi 50 50 50 11.6 36.1 32.5 – 24.3 75.4 66.7 –
SeMoLi 10 90 10 9.4 35.4 31.7 – 19.7 74.6 66.2 –

DBSCAN++ [8] 100 0 – – – – – – – 40.4

Table 6. Semi-supervised 3D object detection on Waymo Open Dataset: We evaluate models on all (top) and only moving (bottom)
on Waymo Open validation set. For each evaluation procedure we (i) show the ground truth baselines. Then we (ii) compare the different
versions of SeMoLi utilizing the same train detector training split. To compare SeMoLi to our baseline DBSCAN++† we (iii) show
a comparison of both utilizing different percentages of pseudo-labeled data. Finally, we (iv) also show a comparison utilizing different
combinations of pseudo-labeled and labeled data. % GT indicates the amount of labeled training data, % Pseudo indicates the amount of
pseudo-labeled data.

