
DiffHuman: Probabilistic Photorealistic 3D Reconstruction of Humans

Supplementary Material

This supplementary material provides additional imple-
mentation details, experiments and qualitative results sup-
porting the main manuscript. In particular, Section A gives
further details on the losses used to train our DiffHuman
model. Section B provides ablation studies investigating: (i)
different types of observation sets, (ii) classifier-free diffu-
sion guidance, and (iii) diffusion-via-rendering vs. hybrid
diffusion. Moreover, we report mean and standard deviation
metrics, to complement the “best of N” metrics reported in
the main paper. Finally, Section C provides further quali-
tative comparisons with competing approaches, as well as
some examples of unconditional 3D reconstruction samples.

A. Implementation Details
Our implicit surface diffusion model is trained using 2 dif-
ferent denoising objectives, given by Eqns. 10 and 12 in
the main manuscript. In addition, we employ a probabilistic
shaded rendering loss to ensure that 3D reconstruction sam-
ples are consistent with the 2D conditioning image, as well
as several 3D losses on the intermediate implicit surface to
stabilise training. These are detailed below.
Shaded rendering loss. We want 3D reconstruction samples,
represented by implicit surfaces S(t)

Θ , to be consistent with
the conditioning image I at every timestep t in the reverse
diffusion process. This is achieved by enforcing shaded front
renders of S(t)

Θ to match I. Shaded renders can be obtained
using the albedo and surface normal images that comprise
the observation sets we use for diffusion-via-rendering and
hybrid diffusion.

Recall that ground-truth observation sets consist of x0 =
{AF ,AB ,NF ,NB ,DF ,DB}. The reverse process gener-
ates samples by repeatedly estimating denoised observations
given noisy observations xt. A denoised estimate obtained
using render is denoted as x̂

(t)
0Θ

, while x̄
(t)
0Θ

represents an
estimate given by generate (see Eqns. 8 and 11 in the main
paper). Front albedo AF and front normals NF may be used
in conjunction with the shading neural network s

(t)
Θ to obtain

shaded front images C(t) at each timestep t. We compute
separate C

(t)
render and C

(t)
generate using the elements of x̂(t)

0Θ

and x̄
(t)
0Θ

, respectively. During training, we apply L2 losses
between shaded renders and the condition I, given by

Lrender
shaded = ∥C(t)

render − I∥22 (1)

Lgenerate
shaded = ∥C(t)

generate − I∥22. (2)

Note that shaded render losses Lshaded have a similar form
to the the denoising diffusion objectives LVLB. However,

Loss Symbol Type Weight

Denoising-via-rendering Lrender
VLB Probabilistic 1.0

Denoising-via-generation Lgenerate
VLB Probabilistic 1.0

Shaded rendering Lrender
shaded Probabilistic 1.0

Shaded generation Lgenerate
shaded Probabilistic 1.0

On-surface SDF on dp - Deterministic 1.0
On-surface albedo on ap - Deterministic 0.2
On-surface normals on np - Deterministic 0.2
Near-surface In/Out on dp - Deterministic 0.2
Near-surface albedo on ap - Deterministic 0.2
Eikonal - Regulariser 0.05

Table 1. Summary of the probabilistic, deterministic and regularisa-
tion losses used to train our model. Loss weights are provided.

Lshaded enforces consistency between an estimated observa-
tion set and the conditioning image I, while LVLB is applied
between the estimated and ground-truth observation sets.
Deterministic 3D losses. LVLB and Lshaded are probabilistic
losses applied within the diffusion framework. In addition,
we employ several deterministic 3D losses on surface ge-
ometry and albedo, following PIFu [6] and PHORHUM [1],
which improves training stability in our experience.

Specifically, we supervise SDF values dp, albedo field
values ap and per-point normals np at 3D points p sampled
from the ground-truth 3D human surface. dp is enforced to
be 0 for these on-surface points. Additionally, we supervise
the sign of samples taken around the surface using an inside-
outside classification loss implemented using binary cross-
entropy. This is applied to the SDF values dp for near-surface
points. Moreover, following [6], the albedo colour field ap

is also supervised for near-surface points. The ground-truth
near-surface albedo at p is approximated using the albedo of
the nearest neighbour on the ground-truth surface. Finally,
we use an Eikonal geometric regulariser [3] to enforce SDF
predictions to have unit norm gradients everywhere.

All losses are summarised in Tab. 1 in this supplemen-
tary material, which also provides associated loss weight
hyperparameters. Note that deterministic losses are gener-
ally weighted lower than probabilistic losses, to encourage
sample diversity. Future work may investigate the feasibility
of removing deterministic losses altogether.

B. Ablation Studies

This section presents additional ablation studies. We begin
with a discussion of “best-of-N” vs. mean metrics, and report
means and standard deviations to complement the best-of-
N metrics given in the main paper. Then, we provide a



Render
Freq.

Runtime 3D Albedo Front Albedo Back Normals Front Normals Back Shaded Front
s / sample CD ↓ NC ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ Ang. ↓ Ang. ↓ PSNR ↑

Best of
N = 5

Per step 496 0.99 0.85 0.13 22.92 0.25 20.95 21.59 22.88 26.57
Per 10 86 1.12 0.87 0.12 23.24 0.24 21.07 19.05 22.46 27.08
Per 25 34 1.16 0.86 0.11 23.26 0.23 21.06 19.11 22.52 27.09
Final 9 1.16 0.86 0.11 23.26 0.22 21.05 19.12 22.55 27.09

Mean ±
Std.
N = 5

Per step 496 1.03 ± 0.8 0.83 ± 0.04 0.14 ± 0.03 22.34 ± 2.39 0.27 ± 0.07 20.34 ± 3.35 22.47 ± 3.13 23.42 ± 5.49 26.18 ± 1.90
Per 10 86 1.33 ± 0.9 0.85 ± 0.05 0.13 ± 0.04 22.63 ± 2.40 0.24 ± 0.08 20.46 ± 3.36 20.14 ± 3.20 23.15 ± 5.64 26.82 ± 1.91
Per 25 34 1.37 ± 0.9 0.84 ± 0.05 0.13 ± 0.04 22.64 ± 2.43 0.24 ± 0.08 20.45 ± 3.38 20.20 ± 3.16 23.31 ± 5.56 26.83 ± 1.90
Final 9 1.38 ± 0.9 0.84 ± 0.05 0.12 ± 0.04 22.65 ± 2.43 0.23 ± 0.08 20.46 ± 3.37 20.24 ± 3.14 23.20 ± 5.54 26.84 ± 1.90

Table 2. Ablation of hybrid implicit surface diffusion. N = 5 samples are obtained using 100 DDIM [8] steps. We ablate periodic render
every 1, 10 and 25 steps, as well as only in the final step. The latter only involves running Marching Cubes [5] for mesh extraction in the
final step. All other denoising steps use generate. While per step render performs best on 3D metrics, predominantly using generate

results in better perceptual quality in rendered metrics. The best and second best results are marked. We report both best-of-N and mean
(± std.) metrics for completeness.

Observations in x0 3D Albedo Front Albedo Back Normals Front Normals Back Shaded Front
Type View CD ↓ NC ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ Ang. ↓ Ang. ↓ PSNR ↑

Best of
N = 5

A,N F,B 1.11 0.84 0.14 21.39 0.26 18.74 20.24 23.86 25.13
A,D F,B 1.05 0.78 0.14 21.68 0.27 19.57 19.14 22.39 24.94
A,N,D F 1.18 0.86 0.12 23.04 0.27 19.17 19.13 22.59 25.97
A,N,D F,B 1.16 0.86 0.11 23.26 0.22 21.05 19.12 22.55 27.09

Mean ±
Std.
N = 5

A,N F,B 1.31 ± 0.8 0.82 ± 0.06 0.15 ± 0.04 20.96 ± 2.22 0.27 ± 0.08 18.31 ± 2.93 21.69 ± 4.34 24.65 ± 5.63 24.93 ± 2.07
A,D F,B 1.29 ± 1.0 0.76 ± 0.10 0.15 ± 0.04 21.07 ± 2.33 0.28 ± 0.08 18.83 ± 2.70 20.25 ± 3.62 22.89 ± 6.17 24.46 ± 2.68
A,N,D F 1.37 ± 0.8 0.83 ± 0.06 0.13 ± 0.03 21.67 ± 2.30 0.28 ± 0.09 18.70 ± 2.71 19.75 ± 3.85 23.27 ± 6.21 25.88 ± 2.13
A,N,D F,B 1.38 ± 0.9 0.84 ± 0.05 0.12 ± 0.04 22.65 ± 2.43 0.24 ± 0.08 20.46 ± 3.37 20.24 ± 3.14 23.20 ± 5.54 26.82 ± 1.90

Table 3. Quantitative comparison between different types observation sets x0 used during implicit surface diffusion. A, N and D refer to
albedo, surface normal and depth images respectively. F and B designate front and back views. Populating x0 with front and back views of
all 3 observation types gives the best all-round performance. Thus, this is the protocol used in the default DiffHuman model presented in the
main paper. The best and second best results are marked. We report both best-of-N and mean (± std.) metrics for completeness.

more detailed comparison of diffusion-via-rendering vs. our
novel hybrid diffusion framework. We investigate different
types of observation sets for diffusion, by dropping particular
observations from x0. Finally, we implement classifier-free
diffusion guidance [4] with an unconditional model and
report corresponding metrics.

Mean vs. best-of-N metrics. The main paper reports eval-
uation metrics using the best-of-N ∈ {1, 5, 10} reconstruc-
tions. This is justified for ambiguous metrics that measure
performance in ill-posed tasks, where the ground-truth is
but one plausible solution. Our method is able to yield other
solutions that are consistent with the input image but differ
from the ground truth. Capturing the ground-truth within the
range of solutions modelled by our predicted distributions is
sufficient – this is measured by best-of-N .

However, not all metrics correspond to ill-posed tasks.
In particular, “shaded front” metrics (e.g. PSNR) measure
the match between 3D reconstruction samples and the input
image. All samples should be input-consistent; hence, report-
ing the mean over N samples is logical. This is arguably
also true for LPIPS, which measures perceptual similarity, as
noted by [9]. Therefore, Tabs. 2 and 3 in this supplementary
material report means and standard deviations, in addition
to best-of-N metrics. For completeness, these are provided
for both well-posed and ill-posed tasks. Note that standard
deviations are generally higher for back albedo and normals
than the front. This is desired, and signifies greater diver-

sity in unseen regions. Furthermore, standard deviations are
lower for front shading, which should consistently match the
conditioning image.

Hybrid implicit surface diffusion. Tab. 1 in the main paper
gives a brief ablation of our novel hybrid implicit surface dif-
fusion framework. We provide more detailed results in Tab. 2
in this supplementary material, where we compare denois-
ing via render, via generate, and using a combination of
both. The performances of all these methods are comparable,
suggesting that the generate neural network has learned to
imitate explicit rendering well. However, generate has a
much reduced runtime – specifically giving a 55× speed-up
over the reverse process. A qualitative comparison of these
denoising strategies is visualised in Fig. 5 in this supplemen-
tary material.

Observations in x0. DiffHuman models a distribution over
image-based, pixel-aligned observations of an implicit 3D
surface S . The default method utilises three types of observa-
tions of the front and back surfaces of S: (i) unshaded albedo
colour images AF and AB , (ii) surface normal images NF

and NB and (iii) depth maps DF and DB . In this supple-
mentary material, we investigate the importance of each of
these observations. Specifically, we train 3 ablation models
by omitting depth, normals and back views in turn from the
observation set x0. A quantitative comparison is provided
in Tab. 3. Utilising all of aforementioned observation types
in x0 gives the best all-round performance on a range of



Train with
Drop Cond.

Test with
Guidance

3D Albedo Front Albedo Back Normals Front Normals Back Shaded Front
CD ↓ NC ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ Ang. ↓ Ang. ↓ PSNR ↑

Yes No 1.29 0.84 0.13 22.22 0.25 20.37 20.38 22.90 26.07
Yes Yes 1.42 0.82 0.14 21.37 0.25 19.98 22.25 24.31 26.99
No No 1.16 0.86 0.11 23.26 0.23 21.06 19.11 22.46 27.09

Table 4. Quantitative evaluation of classifier-free diffusion guidance [4] applied to DiffHuman. We jointly train an unconditional and
conditional implicit surface diffusion model, by randomly dropping the conditioning image I. The effectiveness of guidance with the
unconditional model is evaluated in rows 1 and 2. Guidance improves the match between 3D reconstruction samples and the conditioning
image, as measured by “Shaded Front” metrics. However, it causes a deterioration of most other metrics. In addition, we report results from
the standard DiffHuman model trained without random condition dropping in row 3. This consistently outperforms the model trained with
dropping. All metrics are best-of-N = 5. We use a guidance weight of 3. The best and second best results are marked.

metrics. Dropping back views intuitively worsens metrics
computed with back renders. Omitting depth and normals
also generally degrades performance - apart from Chamfer
distance. However, we note that Chamfer distance is a noisy
metric, as evidenced by the large relative standard devitions,
and it is difficult to make conclusive judgements from these
results.
Classifier-free guidance [4] is an inference-time tech-
nique used to trade-off sample quality (including input-
consistency) vs. diversity in conditional diffusion models.
We experimented with applying guidance to our method, by
jointly training a conditional and an unconditional implicit
surface diffusion model. In practice, this was achieved by
randomly dropping the conditioning image I as a network
input with probability 0.2. Quantitative results are reported
in Tab. 4 in this supplementary material. We found that guid-
ance with an unconditional model can indeed improve the
match between 3D reconstruction samples and the condi-
tioning image, as measured by metrics corresponding to
shaded front renders. However, it caused a deterioration of
most other metrics – shown by row 1 vs. row 2 in Tab. 4.
Moreover, training with random condition dropping yielded
worse performance than a model that always sees a condi-
tioning image. Perhaps a larger and more diverse training
dataset is needed to fully realise the benefits of diffusion
guidance in this task. Nevertheless, we find it instructive to
visualise unconditional generation samples in Fig. 1 in this
supplementary material. These exhibit a significant amount
of diversity, covering a range of clothing and hair styles,
colours and geometries. Moreover, unconditional samples
are generated starting from random noise in the silhouette
of a particular body shape (see Fig. 1). This is a by-product
of the fact that our method applies foreground masking to
all neural network inputs. Noise within a silhouette can be
considered as a form of implicit conditioning, and allows us
to exert control over the body shapes of 3D human samples.

C. Qualitative Results
This section provides further qualitative comparisons with
current deterministic approaches to photorealistic 3D human
reconstruction. Fig. 3 visualises samples from DiffHuman
against reconstructions from PHORHUM [1] and S3F [2] –
both of which estimate surface geometry, albedo colour and
illumination-dependent shading. Fig. 4 compares DiffHuman
with methods that only estimate surface geometry: PIFuHD
[7], ICON [10] and ECON [11].

Furthermore, we present qualitative results from addi-
tional experiments investigating the feasibility of DiffHu-
man as a generative model. As mentioned previously, Fig. 1
visualises unconditional 3D human samples generated from
random noise in the silhouette of a given body shape. This
allows us to loosely control the shape of 3D human samples.
We extend this approach, by experimenting with using edge
maps as conditioning images – inspired by ControlNet [12].
This allows us to have more fine-grained control over 3D
samples, without having to provide a full RGB conditioning
image. Qualitative results are given in Fig. 2. These serve as
a proof-of-concept for controllable generative applications
beyond reconstruction.

Finally, Fig. 5 compares implicit surface diffusion via
render vs. generate, to support the ablation studies pre-
sented in Tab. 2.
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Figure 1. Unconditional 3D reconstruction samples generated using an implicit surface diffusion model trained with random condition
dropping (following the protocol of classifier-free guidance [4]). These unconditional samples are generated from random noise only, which
is masked using a silhouette in the shape of the desired subject. They exhibit significant diversity in terms of clothing styles, colours and
geometries, as well as hairstyles, facial features and skin tones. For more ambiguous body shapes, different gendered properties are visible.
The silhouette masking can be considered as a form of implicit conditioning, and allows us to exert some control over the 3D samples. Faces
and certain body parts are blurrier for these unconditional samples than the conditional samples visualised in other figures. This is somewhat
unsurprising, since conditioning images carry a lot of information on these fine features, which unconditional samples are not privy to.
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Front Albedo and Geometry Back Albedo and Geometry

Figure 2. 3D reconstruction samples conditioned on edge map inputs. These samples are generated using an implicit surface diffusion
model that was pre-trained with conditioning RGB images, and then fine-tuned using conditioning edge maps – inspired by ControlNet [12].
Edges are obtained as image gradients using the Sobel operator. The 3D samples exhibit diverse colours, while the surface geometry respects
the edge maps. This experiment demonstrates that samples from DiffHuman can be controlled via simpler conditioning inputs than full RGB
images, which opens the possibility for generative applications beyond reconstruction from monocular images.
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Figure 3. Qualitative comparison against deterministic monocular 3D human reconstruction methods that predict geometry, surface
albedo and shaded colour: PHORHUM [1] and S3F [2]. We show results from the original PHORHUM paper – not our retrained version.
Our method, DiffHuman, predicts a distribution over 3D reconstructions from which we can draw multiple samples. We visualise 2 samples
from the back and 1 sample from the front for our method. PHORHUM outputs good front predictions, but exhibits flat geometry and blurry
colours on the back. S3F [2] yields more detailed geometry, but colours are still often blurry. Moreover, shaded renders of the reconstructions
from each of these methods do not consistently match the input image. Our method is able to output multiple samples that are detailed, both
in seen and unseen regions. In particular, note the hair geometry in row 1 and diversity of dress styles (from the back) in row 5. Samples from
our method exhibit a greater level of input-consistency, as shown by the shaded renders in rows 1, 2 and 4. Furthermore, we can faithfully
handle a wider variety of body shapes, such as row 4.
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Figure 4. Qualitative comparison against deterministic monocular 3D human reconstruction methods that predict only surface
geometry: PIFuHD [7], ICON [10] and ECON [11]. Our method, DiffHuman, predicts a distribution over 3D reconstructions from which
we can draw multiple samples. We visualise 2 samples from the back and 1 sample from the front for our method. Samples from our method
exhibiti greater geometric detail, both in seen and unseen and regions. In particular, note the front of the suit jacket in row 1, skirt in row 3,
trousers in row 4 and hood in row 5. Moreover, when such details are unlikely – e.g. the back of the jacket in row 1, which is typically flat –
our method plausibly outputs samples with simpler geometry. Samples differ in hair styles and clothing colours on the back.
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Figure 5. Qualitative comparison between implicit surface diffusion via rendering, and hybrid diffusion using both rendering
and generation. Diffusion via rendering involves rendering an intermediate 3D representation in each denoising diffusion step to obtain
a denoised sample. Hybrid diffusion uses a generator network that imitates rendering during the denoising process, at a much faster
runtime. This figure complements Table 1 in the main manuscript and Table 2 in this supplement, by showing that samples from both these
denoising processes are similar – quantitatively and qualitatively. This suggests that the generator network learns to imitate explicit rendering
sufficiently well. In fact, samples obtained via generation are often perceptually preferable to rendered samples (see the face in row 2). This
could be because the generator network focuses solely on synthesising realistic observations, and is not constrained by explicit 3D geometry.
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