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Figure 1. Illustration of diverse target images from randomly gen-
erated source images.

Figure 2. The relationship between the images and their identities
in the latent space with t-SNE [6]. Points of the same color denote
the same identity. We used 5 images per identity from CelebAHQ
dataset.

A. Additional Experiments
A.1. Target Images from Diverse Source Images

In Figure 1, we visualized target images corresponding to
the diverse source images. In this experiment, we used ran-
domly sampled wu to find the corresponding wt. Instead
of the average latent code, by setting an extrapolated latent
code as a target, we can obtain the effective and diverse tar-
get images for unlearning procedure.

A.2. Distribution of Identities within CelebAHQ

In designing GUIDE, we assume that images sharing the
same identity tend to cluster together. Consequently, con-
sidering the proximity of latent codes aids in a more com-
prehensive erasure of identity. Figure 2 illustrates the re-
lationship between images and their respective identities,
utilizing 5 images per identity. Our observation reveals a
close grouping of images from the same identity in the la-
tent space. This finding aligns with the effectiveness of the
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Figure 3. Qualitative results of generative identity unlearning on
AFHQv2-Cat dataset.

FIDpre (↓) ∆FIDreal (↓)
AFHQv2-Cat 5.93 ± 1.03 3.44 ± 1.68

Table 1. Quantitative results of generative identity unlearning on
AFHQv2-Cat dataset. The existing ID metrics are designed for
the human face, and there are no adequate metrics for cat. For
this reason, we only represent about FIDpre and ∆FIDreal in this
experiments.

Ladj proposed in Section 3.3 of our main paper.

A.3. Generative Identity Unlearning in AFHQv2

In this section, we validated GUIDE in a different dataset
- AFHQv2-Cat [2]. We used the generator architecture
[1] and the GAN inversion network [7] pre-trained on
AFHQv2-Cat. The pre-trained weights are publicly avail-
able at their official implementations. Since the identity
loss [3] used in our main experiment were designed to cap-
ture the dissimilarities between identities in human faces,
we only adopted to use the reconstruction loss and the per-
ceptual loss [8] in this experiment. The qualitative results
are shown on Figure 3. We could show the effectiveness of
GUIDE in a different domain - faces of cats. In Table 1, we
additionally show that GUIDE can preserve performance of
pre-trained model on AFHQv2-Cat.

A.4. Target Images from Different d

In addition to Section 4.3 in our main paper, titled “Effect
of d in Determination of wt”, this section presents further
experiments involving a variety of target images. We visu-
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Figure 4. Illustration of target images from source images with different d in Random scenario.
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Figure 5. Illustration of target images from source images with different d in In-domain (FFHQ) and Out-of-domain (CelebAHQ) scenario.

alized target images derived from a given source image at
multiple d values. In Figure 4, we utilized various d val-
ues to sample the corresponding target image in the Ran-
dom scenario, while Figure 5 is for the In-domain and Out-
of-domain scenarios. Our results illustrate that adjusting
d allows us to obtain diverse target images. However, as

mentioned in our main paper, target images derived from
interpolated latent code, where d is less than 0, exhibit sim-
ilarity to the given source image. Conversely, target images
with d ≥ 50 tend to be corrupted. Therefore, our choice of
d = 30 appears to strike a visually balanced representation
for the target image.
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Figure 6. Additional qualitative results with CelebAHQ dataset.

Source Unlearned

Figure 7. Generated images given the source image with different camera poses.

A.5. Additional Qualitative Results

In this section, we presented additional qualitative results.
In contrast to our main paper, we utilized 10 images per
identity, and the results are illustrated in Figure 6. The find-
ings emphasize once again that GUIDE successfully erases
the identity not only in the given source image but also in
other images with the same identity.

A.6. Multi-View Synthesized Images

In this section, we visualized the unlearned images from
continuous camera poses. We conducted this experiment
within Out-of-domain scenario. As shown in Figure 7, our
unlearning process successfully erased the source identity
across multiple poses.



Method In-Domain (FFHQ) Out-of-Domain (CelebAHQ)
ID FIDpre ∆FIDreal ID FIDpre ∆FIDreal

Baseline 0.14 8.60 5.97 0.05 6.75 4.32
Ours 0.06 6.14 4.35 0.01 6.07 4.25

Table 2. Quantitative results of GUIDE-SG2 (Ours) and the base-
line in the generative identity unlearning task, tested in a single-
image setting using one image per identity. Due to space limit,
we presented the corresponding standard deviations in the Supple-
mentary materials.
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Figure 8. Qualitative results of GUIDE-SG2 and the baseline. For
the given source image each (the first row), GUIDE-SG2 and the
baseline tried to erase the identity in the pre-trained generator. The
result are shown on the second row. Images in the third row are
the target image in our unlearning process.

A.7. Generative Unlearning in StyleGAN2

In addition to our primary experiments employing a 3D gen-
erative adversarial network as the generator architecture,
we observed the effectiveness of our framework in unlearn-
ing identity in 2D generative adversarial networks. In this
section, we utilized the widely-used StyleGAN2 [4] as the
backbone architecture and pSp [5] as a GAN inversion net-
work for latent code extraction from images. Both the back-
bone and the GAN inversion network were pre-trained on
FFHQ [4]. We refer to our framework built on top of Style-
GAN2 as GUIDE-SG2.

In GUIDE-SG2, we employed images from the Style-
GAN2 generator for calculating loss, instead of tri-plane
feature maps. We present results of GUIDE-SG2 quali-
tatively in Figure 8 and quantitatively in Table 2. Both
results demonstrated GUIDE-SG2 successfully erased the
given identity in a 2D GAN architecture with minimal im-
pact on the performance of the pre-trained generator.

Na ID (↓) IDothers (↓) FIDpre (↓) ∆FIDreal (↓)
1 0.046 ± 0.054 0.191 ± 0.077 8.001 ± 1.992 3.515 ± 1.153

2 0.030 ± 0.051 0.174 ± 0.081 7.882 ± 1.958 3.442 ± 1.104

4 0.034 ± 0.055 0.184 ± 0.077 7.668 ± 1.807 3.340 ± 1.028

Table 3. Ablation study to figure out the optimal Na. To find
optimal, we performed the analysis with different Na. As can be
seen, when Na is 2, GUIDE erase the identity most effectively,
and the performance of the pre-trained model can be preserved.
We used CelebAHQ dataset in this experiment.

Ng ID (↓) IDothers (↓) FIDpre (↓) ∆FIDreal (↓)
1 0.065 ± 0.067 0.180 ± 0.080 7.875 ± 2.017 3.491 ± 1.118

2 0.030 ± 0.051 0.174 ± 0.081 7.882 ± 1.958 3.442 ± 1.104

4 0.031 ± 0.055 0.181 ± 0.075 7.705 ± 1.868 3.359 ± 1.079

Table 4. Ablation study to figure out the optimal Ng . To find
optimal, we performed the analysis with different Ng . As can be
seen, when Ng increase, GUIDE can preserve the performance
of pre-trained model more effectively. When Ng = 2, GUIDE
have achieved a balanced performance in our metric. We used
CelebAHQ dataset in this experiment.

λL2 ID (↓) IDothers (↓) FIDpre (↓) ∆FIDreal (↓)
10−3 0.089 ± 0.060 0.269 ± 0.086 4.815 ± 1.000 1.454 ± 0.294

10−2 0.030 ± 0.051 0.174 ± 0.081 7.882 ± 1.958 3.442 ± 1.104

10−1 0.032 ± 0.053 0.159 ± 0.073 13.308 ± 2.989 7.783 ± 1.808

1 0.036 ± 0.052 0.161 ± 0.073 15.034 ± 3.079 9.198 ± 1.858

Table 5. Ablation study to figure our the optimal λL2. We com-
pared the performance among different λL2 in CelebAHQ dataset.

B. Additional Ablation Study

B.1. Number of Latent Codes in Loss Functions

In the computation of Ladj and Lglobal, as outlined in Sec-
tion 3.3 of our main paper, we incorporated Na and Ng la-
tent codes, respectively. In this section, we investigate the
influence of varying Na and Ng . Due to an out-of-memory
issue in VRAM, these experiments were conducted on an
NVIDIA A6000 GPU. Table 3 presents the results of vary-
ing Na in Ladj while keeping Ng fixed at 2. Our findings
indicate that using Na = 2 yields the best performance in
erasing the given identity among different values of Na,
while maintaining comparable performance in preserving
generation quality. Conversely, in Table 4, we varied Ng in
Lglobal while keeping Na fixed at 2. Results show that using
Ng = 2 achieves a balanced performance between erasing
the given identity and preserving generation performance.
Importantly, all cases experimented upon outperformed the
baseline in generative identity unlearning task.



λid ID (↓) IDothers (↓) FIDpre (↓) ∆FIDreal (↓)
10−2 0.033 ± 0.053 0.177 ± 0.080 7.879 ± 1.943 3.460 ± 1.093

10−1 0.030 ± 0.051 0.174 ± 0.081 7.882 ± 1.958 3.442 ± 1.104

1 0.105 ± 0.053 0.244 ± 0.081 7.920 ± 1.781 3.534 ± 0.953

Table 6. Ablation study to figure our the optimal λid. We com-
pared the performance among different λid in CelebAHQ dataset.

B.2. Scaling Factors of Loss Functions

In Llocal and Ladj , as proposed in Section 3.3 of our main
paper, we set the scaling factors as λL2 = 10−2 and
λid = 10−1. In this section, we conducted ablation stud-
ies to determine the effective scaling factors.

In Table 5, we varied λL2 while fixing the other scaling
factors as default. For small λL2, the generator architec-
ture could not successfully erase the given identity. On the
other hand, for larger λL2, the generator architecture lost
generation performance significantly. Based on these ob-
servations, we decided to use λL2 = 10−2 for balanced
performance. In Table 6, we varied λid while fixing the
other scaling factors as default. Our findings indicate that
using λid = 10−1 is the most effective.

C. Additional Implementation Details
Besides the Section 4.1 in our main paper, in this sec-
tion, we additionally describe the implementation details
that are omitted in the main paper due to space limit. We
ran GUIDE and the baseline using a single NVIDIA A5000
GPU. Erasing the given source identity using GUIDE takes
about 20 minutes. We utilized only a single image to repre-
sent a certain identity; GUIDE underwent 1,000 iterations
throughout our experiments.
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