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Architecture  Dataset  Original .Random Zigrag Inversion Standardization Linear Scaling Centering Gamma Correction
pixel perm.  perm. t=05 t=20 t=10 ¢t=20 =05 ~v=20

Kodak 1371.4 1100.5 79.8 22714 706.7 18752 1051.0 2071.7 1591.7  4297.1 1835.4

SIREN DIV2K  1568.6 1366.3 73.3 2512.1 778.8 2033.6 1153.6 18922 15323  6630.2 2102.6
CLIC 1257.1 1233.7 73.5 2089.9 683.6 1832.4 10143  1663.3 13341 63593 1806.8

Kodak 207.3 217.1 240.6 3121.9 761.7 168.3 304.0 167.1 258.6 1861.2 677.3

Instant-NGP  DIV2K  194.0 146.7 247.1 4240.3 439.1 164.6 505.6 151.4 2452 42079 1369.1
CLIC 199.0 1514 238.5 3881.8 490.4 168.2 502.3 152.0 2574 47737 1418.4

Table S4. Average steps for achieving PSNR 50dB. We report the average steps of 8 data transformations (including original) under
six different combinations of datasets and models. The instances that do not achieve the target PSNR with any of the learning rates are
excluded from the average calculation. Gamma correction with v = 2.0 fails to fit (1, 2, 1) images on Kodak, DIV2K, and CLIC datasets,
respectively. Similarly, v = 0.5 and Linear Scaling with t = 2.0 do not fit (0, 6, 2) and (1, 2, 1) images in these datasets, respectively.

S1. Wall-clock latency comparison

We primarily focus on evaluating the speedup through our
proposed acceleration factor, which is derived from the
number of SGD steps. In Tab. S5, we show whether this
factor indeed leads to an acceleration of neural field train-
ing. To demonstrate this point empirically, we conduct
a comparison between the average wall-clock runtimes of
two key stages: data pre-processing and loading (referred
to as “Load”) and the actual SGD iterations (referred to
as “Train”) on original and RPP Kodak images. We find
that the extra computation spent during the “Load” is much
smaller in scale than the speedup from “Train”, resulting in
a net speedup. This corresponds to a time savings of 54543
ms, a whopping 25% time reduction, in the SIREN archi-
tecture, where SGD iterations make up the majority of the
training.

SIREN Instant-NGP
Load (ms) Train (ms) Load (ms) Train (ms)
Original 2,913 212,170 1,133 8,484
RPP 2,933 157,607 1,324 7,813
(+20) (-54,563) (+191) (-671)
Speedup 54,543 480

Table S5. Wall-clock speedup (ms) on Kodak dataset.

Note. The net speedup may depend on the choice of hardware;
we measure the wall-clock speed on GPU server with a NVIDIA
GeForce RTX 3090, and AMD EPYC 7313 16-Core CPU. The
speedup can be even larger in CPU-only setups where training is
much slower (e.g., mobile devices).

S2. Average number of steps for achieving tar-
get PSNR

In Tab. S4, we present the average number of steps required
to achieve a 50dB Peak Signal-to-Noise Ratio (PSNR). We
observe that this table does not exactly reflect the trends ob-
served in Tab. 1 of the main paper. This discrepancy is due
to the presence of outliers; some images that require much
bigger number of steps than other images can dominate the
overall statistic. For example, for Instant-NGP, the origi-
nal Kodak#20 image requires 1279 number of steps until
convergence, which is 7.96 times greater than other images
on average. In such case, the average depends heavily on
this sample; without Kodak#20, the average for original is
160.7 steps and for RPP is 111.0 steps. The acceleration
factor, which we used for the main table, is relatively robust
against this issue.

Note. For some data augmentations, several augmented im-
ages could not have been fit with Instant-NGP to PSNR
50dB, with any of the learning rates that we tried. In par-
ticular, Gamma correction with v = 2.0 cannot fit (1,2, 1)
images on Kodak, DIV2K, and CLIC datasets, respectively.
Likewise, Gamma correction with v = 0.5 and Linear Scal-
ing with ¢ = 2.0 cannot fit (0,6, 2) and (1,2, 1) images in
each datasets, respectively. For these cases, we report the
average number of steps except on unconverged cases. Nev-
ertheless, the average number of steps for PSNR 50dB on
other data points for these augmentations are typically very
large; thus it is very unlikely that these modified averages
will lead to a misleading conclusion that such augmenta-
tions are beneficial for the training speed.



S3. Extended discussions on the potentials and
limitations of data transformations

While RPP provides consistent speedups for fitting the given
datum, it has limited applicability to scenarios that require
the trained model to have certain characteristics, such as
interpolatability (as briefly discussed Sec. 2.2). This section
provides a more comprehensive discussion on this matter, to
elucidate both the potential benefits and limitations.

Image fitting is to represent the target 2D image with a cor-
responding neural field [24, 34]. Here, the main challenge is
to overfit to a singular data instance with high fidelity, and
our framework is well-suited for this application. By ap-
plying the same permutation matrix across all images, RPP
can accelerate training without additional memory overhead
(Appendix S4).

Image superresolution [4, 14, 47] and image inpainting
[30, 41] utilizes neural field trained on a set of seen coor-
dinates to predict the signal value on unseen coordinates.
These applications strongly rely on the ability of neural field
to capture the spatial patterns of the target signal from the
seen coordinates and interpolate them. However, RPP in-
troduces a significant challenge in learning the meaningful
implicit information in terms of spatial relationships. RPP
can disrupt the neural field’s understanding of locality and
continuity, which is vital for both superresolution and in-
painting. Other transformations that adjust only pixel in-
tensities (e.g., standardization), retain the local structure of
data, and can thus be used.

Data compression [6, 8, 17] reduces the required number
of bits to store the data by representing the datum by a neu-
ral field with a small number of parameters. This idea, how-
ever, entails substantial computational resources for each
datum during the encoding process, where we need to train
a neural field. RPP is potentially very useful for reducing
the encoding time, by accelerating the neural field training.

3D scene reconstruction and novel view synthesis [25,
26] utilizes a neural field trained on a small number of 2D
images of a same 3D scene to generate a novel view of
the scene. For this, we heavily rely on the capability of
the neural field to infer implicit relationships from all in-
put data. Data transformations involving pixel relocations
present a significant hurdle in this context, complicating or
outright precluding the networks to predict the adequate re-
lationship. Several concurrent works [20, 22] have explored
a training paradigm which trains a single input with seg-
menting based on the inherent characteristics such as fre-
quencies. Our hypothesis, “blessing of no pattern”, can
provide a novel insight within this discourse. We demon-
strate that there exist representative patterns in data, and
they work completely differently depending on the learning
phase. From this point of view, the representative patterns
can serve as a new criterion for partitioning an instance.

Inference with neural field weights [5, 7] regards the set
of weight parameters derived from neural fields as a con-
ventional input feature, based on which we perform infer-
ence. Data transformations can help constructing a large-
scale dataset of neural field weights, which can be used to
train a model that predicts based on the weight vectors.

S4. Utilizing a single permutation matrix for
RPP

In the main paper, we used an independently drawn per-
mutation matrix for each RPP image. Despite the interest-
ing results, this hinders applying RPP to further applications
due to its complete randomness and memory footprint of
the matrix.

Independently drawn
1.26x
1.50%

Same permutation
1.27x
1.51x

SIREN
Instant-NGP

Table S6. Using independently drawn vs. same permutation.

We find that RPP can accelerate the neural field training even
with a single unified permutation matrix. In Tab. S6, we
compare the acceleration factors of RPP using the indepen-
dently drawn random permutation (per image) and using the
same permutation, on the Kodak dataset. We observe that
the quantities are roughly identical to each other both in two
architectures.
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Figure S9. Frequency spectra of original vs. RPP (DIV2K).
We compare the average DCT coefficients of the original and RPP
DIV2K images. Upper left region denotes the low-frequency, and
the lower right region denotes the high-frequency.
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Figure S10. Frequency spectra of original vs. RPP (CLIC).
We compare the average DCT coefficients of the original and RPP
CLIC images.

S5. DCT coefficient of other datasets

In Fig. 3 of the main text, we have compared the average
Discrete Cosine Transform (DCT) coefficients of original
images and RPP images on the Kodak dataset. Figure 3
demonstrates a discernible pattern: in the original images,
we observe that the upper left region (low-frequency com-
ponents) has much higher coefficients than other regions,
whereas in RPP images the scale of the coefficients are rel-
atively uniform. We extend our analysis to other datasets,
DIV2K and CLIC, to validate the consistency of our initial
findings. The results from these datasets (Figs. S9 and S10,
respectively) mirror the observations on the Kodak images.
In the original images from DIV2K and CLIC, we once
again observed a prevalence of low-frequency components,
particularly in the upper left region of the frequency spectra.
The distribution is uniform on RPP images.

S6. Full PSNR curves on the Kodak dataset

Figures S11 and S12 show the PSNR curves of a total of 24
images in Kodak dataset. RPP images fit faster than original
images on 15 out of 24 images (marked with ).
Throughout all images, the RPP images quickly surge to
PSNR 50dB at a later stage in the majority of cases. In
contrast, the original images show fluctuating PSNR values,
which mostly hover above a moderate level, i.e. 30dB.
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Figure S11. PSNR Curves of Kodak images #01—#12. We report the PSNR curves of Kodak images. The RPP images quickly surge to

PSNR 50dB.
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Figure S12. PSNR Curves of Kodak images #13—#24. We report the PSNR curves of Kodak images. The RPP images quickly surge to
PSNR 50dB.
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(a) Kodim#16 from permuted image

(d) Kodim#16 from permuted image

(e) Kodim#17 from permuted image

(f) Kodim#07 from permuted image

Figure S13. Example reconstructions at a target PSNR value of 30dB (Instant-NGP). We report the reconstructed images with Instant-
NGP at PSNR 30dB. The original images have subtle axis-aligned artifacts.

S7. Reconstructed images in Instant-NGP

We present an extended analysis of the reconstructed im-
ages using Instant-NGP at a higher target PSNR value of
30dB. While the increase in PSNR typically correlates with
enhanced image fidelity, our observations reveal a subtle,
yet noteworthy, persistence of artifacts. These artifacts,
manifesting as horizontal and vertical lines, are similar in
nature to those observed at the lower PSNR of 20dB Fig. 8,
albeit less pronounced. Figure S13 illustrates these find-
ings, showcasing the reconstructed images at PSNR 30dB.
We hypothesize that these artifacts are intrinsically linked
to the spatial grid encoding of the Instant-NGP model, a
pattern consistent with our earlier observations at the lower
PSNR threshold.

S8. Additional loss landscapes
S8.1. Landscapes on other images

We show the loss landscapes for the first two images from
Kodak, DIV2K, and CLIC. As shown in Figs. 5 and 6, we
select a direction vector between two parameters and, the
other direction randomly. In Figs. S14 to S19, (a) and (b)
illustrate the loss landscapes during the early phase (i.e. ini-
tial point to 30dB), while (c) and (d) correspond to the late
phase (i.e. 30dB to 50dB). In the early phase, as illustrated
in the most of the figures, the loss landscape of the origi-
nal image shows a smoother and more navigable trajectory
from the initial point to a PSNR of 30dB than the RPP. We
also typically observe a "linear expressway’ in all the loss
landscapes of the RPP images, which is detailed in our main

paper.

S8.2. Projections on different direction vectors

Figure S20 shows the loss landscapes for the Kodak#08 im-
age, which is already used in Figs. 5 and 6. We keep the
direction between two parameters, yet in this instance, an-
other direction is chosen differently at random. Despite the
difference in random directions, the overall shapes of the
loss landscapes exhibit a similarity due to the insignificance
of random vectors in a high-dimensional space.

Furthermore, we provide the loss landscapes again for
the Kodak#08 image, opting not to select the direction ran-
domly this time. Instead, we use the top-1 eigenvector, cor-
responding to the largest eigenvalue of the Hessian matrix
of the loss function, rather than the random vector. Fig-
ures S21 and S22 presents these loss landscapes, offering
both elevated and side views as in Figs. 5 and 6, respec-
tively.
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Figure S14. SIREN loss landscape: Kodak#01
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Figure S15. SIREN loss landscape: Kodak#02
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Figure S16. SIREN loss landscape: DIV2K#801
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Figure S17. SIREN loss landscape: DIV2K#802
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Figure S18. SIREN loss landscape: CLIC#01
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Figure S19. SIREN loss landscape: CLIC#02 In this case, the original image is quickly reaches PSNR 50dB (557 steps) than the RPP
image (1610 steps)
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Figure S20. SIREN loss landscape with different random direction: Kodak#08
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Figure S21. SIREN loss landscape with eigenvector direction, corresponding to the largest eigenvalue: Kodak#08 (initial to 30dB)
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Figure S22. SIREN loss landscape with eigenvector direction, corresponding to the largest eigenvalue: Kodak#08 (30dB to 50dB)



	. Introduction
	. General framework
	. Formalisms
	. Example cases

	. Data transformations vs. training speed
	. Experimental setup
	. Results

	. A closer look at the random permutation
	. The PSNR curve: Slower to approximate well, but faster to approximate ``very well''
	. Linear paths in the loss landscape: RPP images find a ``linear expressway''
	. Patterns in the error: The errors are less structured in RPP images

	. Related work
	. Conclusion
	. Wall-clock latency comparison
	. Average number of steps for achieving target PSNR
	. Extended discussions on the potentials and limitations of data transformations
	. Utilizing a single permutation matrix for RPP
	. DCT coefficient of other datasets
	. Full PSNR curves on the Kodak dataset
	. Reconstructed images in Instant-NGP
	. Additional loss landscapes
	. Landscapes on other images
	. Projections on different direction vectors


