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1. Anytime Inference in Online CL (L164)
In online CL, new data continuously arrive in a stream
rather than in a large chunk (e.g., task unit). Several pre-
vious works [2][5] train the model only after a large chunk
of new data accumulates, which leads to poor inference per-
formance on new data during data accumulation, since the
model is not trained during the accumulation period [6, 27].

However, inference queries can occur at any time includ-
ing the data accumulation, i.e., anytime inference, whose
importance has been emphasized by recent research [1, 3]
[17, 27, 36]. Consequently, we focus not only on Alast,
which is measured after the learning has finished for all
data, but also on AAUC, which measures the average accu-
racy during training, i.e., ‘anytime inference’ performance
[27].

2. Analysis about Negative Transformation
(L332)

Negative Transformation Gaussian-Scheduled Disjoint
AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

Patch Permutation 66.37±0.36 69.04±1.39 75.34±0.88 63.73±2.05
Negative Cutmix 65.26±0.22 64.48±1.07 72.86±0.13 56.56±3.25
Gaussian Noise 64.83±0.23 66.97±1.40 74.18±0.22 63.32±1.52

Negative Rotation 69.52±0.13 70.28±1.77 77.86±0.71 69.50±1.94

Table 1. Comparison of various negative transformations to obtain
preparatory data in CIFAR-10

Negative transformation is a transformation that mod-
ifies semantic information of original images and is
widely used in self-supervised learning [4, 5] and out-of-
distribution (OOD) detection [25, 47, 50]. We consider var-
ious negative transformations such as negative rotation (i.e.,
†: Work done while interning at LG AI Research.
∗: Indicates corresponding authors.

rotation by 90, 180, and 270 degrees) [15, 18], patch permu-
tation [4], negative CutMix, and Gaussian noise. Negative
Cutmix is a kind of Cutmix [11] that finely divides an image
into small patches and mixes it with another finely divided
image. Gaussian noise refers to filling all the image pixels
with a Gaussian random noise. Even though Gaussian noise
is not a kind of transformation, it is a straightforward ap-
proach to generate synthetic input that can be distinguished
from the existing images; thus, we also consider this.

Among them, we choose to use rotations 90, 180, and
270 degrees as the negative transform set T , because the ro-
tation transformation is simple to implement, widely appli-
cable from low- to high-resolution images, and also outper-
forms other transformations in our empirical evaluations, as
we can see in Tab. 1. Unlike rotation transformation, which
preserves image continuity while modifying semantic infor-
mation, patch permutation or Negative Cutmix could cause
discontinuities at the boundary of patches [6, 9], leading to
loss of image features.

Furthermore, to compare the effect of various negative
transformations, we compare the cosine similarities be-
tween the features and the corresponding ground truth clas-
sifier as shown in Fig. 1. As we can see in the cyan high-
lighting box, the rotation transformation promotes the con-
vergence of f̂(x) for class 0 towards the ground truth clas-
sifier vector w0.

3. Effect of Negative Rotation Transformation
(L304)

We use negative rotation, which rotates images by 90, 180,
and 270 degrees [15, 18]. Since the vertical information of
the image is more important than the horizontal information
[22, 49] as mentioned in Sec.4.2, rotation by a large angle
changes the semantic information [50]. To empirically ver-
ify that the negative rotation transformation alters the se-
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Figure 1. Cosine similarity between the features f̂(x) for class 0 and the ETF classifier vectors wi at the 10000th iteration after the
introduction of class 0 in the Gaussian Scheduled CIFAR-10 setup.

mantic information of the image, we generate four datasets
by rotating the original data by 0, 90, 180, and 270 degrees
and train the model using each dataset. Subsequently, we
performed inference on all four datasets to check whether
they have different semantics.

Specifically, we used CIFAR-10-R90, CIFAR-10-R180,
and CIFAR-10-R270, created by applying rotation transfor-
mations of 90, 180, and 270 degrees to CIFAR-10 dataset,
respectively. We summarize the results in Tab. 2.

Train Dataset Evaluation Dataset
CIFAR-10 CIFAR-10-R90 CIFAR-10-R180 CIFAR-10-R270

CIFAR-10 92.9 31.7 34.7 31.8
CIFAR-10-R90 32.1 92.6 31.9 35.3

CIFAR-10-R180 33.7 30.9 92.5 32.3
CIFAR-10-R270 32.4 34.3 31.4 92.4

Table 2. Comparison of the inference accuracy of the rotated
datasets after training with each rotated dataset.

4. Prevent Forgetting with ETF Classifier

We compare the performance and forgetting between a fixed
ETF classifier and a learnable classifier. We summarize the
results in Tab. 3. The fixed ETF classifier not only effec-
tively prevents forgetting, but also has high accuracy.

Classifier CIFAR-10 CIFAR-100
AAUC ↑ Forgetting ↓ AAUC ↑ Forgetting ↓

Learnable 66.02±0.18 6.54±1.02 44.37±0.84 9.04±1.45
Fixed ETF 69.61±0.35 3.75±2.21 47.78±0.69 7.41±1.02

Table 3. Comparison of Forgetting and AAUC between a learn-
able classifier and a classifier with fixed ETF structure on CIFAR-
10/100.

5. Comparison of Baselines with Computa-
tional Constraint

Following [10][17], we measure the number of FLOPs re-
quired for each method to complete one iteration. We then
calculate the relative FLOPs with respect to the ER [43],
which is the simplest method, and adjust the total training
iteration to align the total FLOPs used for the entire train-
ing process. With this computational constraint, we com-
pare online CL methods on disjoint and Gaussian sched-
uled setup for CIFAR-10, CIFAR-100, TinyImageNet and
ImageNet-200. Furthermore, we measure the Average On-
line Accuracy (AOA)[7, 17], which uses the newly encoun-
tered streaming data for evaluation before incorporating it
into the training process. We plot the online accuracy on
TinyImageNet in Fig. 2.

6. Comparison of Baselines on CLEAR-10/100

To evaluate the setups in which the domain of classes
changes over time, we compare CL methods with the
CLEAR benchmark and summarize the result in Tab. 5.
In our experiments, we address a more realistic scenario,
called the domain-class-IL setup, where both novel classes
and domain shifts take place. This contrasts with domain-
IL setups, where all classes are initially provided and only
the data distribution changes over time.

EARL significantly outperforms the baselines in
CLEAR-10/100 benchmarks and achieves high perfor-
mance. We perform experiments under the computational
constraints mentioned in Sec. 5.



0 60000 120000 180000 240000
Steps

10

30

50

70
AO

A
EARL DER ER MEMO REMIND SCR PoLRS XDER

Figure 2. Online accuracy in TinyImageNet Disjoint. Red lines denote task boundary

CIFAR-10 CIFAR-100

Disjoint Gaussian-Scheduled Disjoint Gaussian-Scheduled
Method AAUC ↑ Alast ↑ AOA ↑ AAUC ↑ Alast ↑ AOA ↑ AAUC ↑ Alast ↑ AOA ↑ AAUC ↑ Alast ↑ AOA ↑
EWC (Kirkpatrick et al., 2017) 77.30±0.91 62.78±1.25 88.70±0.89 60.91±0.30 63.56±3.04 83.22±0.16 52.94±1.00 43.27±0.41 62.04±0.52 40.89±0.40 42.80±0.89 55.29±0.18
ER (Rolnick et al., 2019) 76.89±0.96 63.92±2.36 88.47±0.78 60.71±0.10 66.71±2.49 82.47±0.17 53.13±1.28 41.97±0.21 62.06±0.73 41.30±0.22 44.10±0.14 55.28±0.33
ER-MIR (Aljundi et al., 2019) 75.08±0.10 63.13±3.32 87.27±1.52 57.25±0.71 59.34±2.12 79.29±0.69 50.17±0.91 42.17±0.50 57.74±0.31 35.52±0.57 41.29±0.71 46.44±0.55
REMIND (Hayes et al., 2020) 67.73±0.42 49.33±1.30 81.30±1.17 55.94±1.06 51.73±4.11 77.41±1.27 40.76±0.46 37.64±1.13 48.18±0.98 22.55±1.58 30.27±1.94 33.02±1.19
DER++ (Buzzega et al., 2020) 75.71±1.46 58.49±3.16 88.93±1.00 59.14±1.15 66.16±3.83 82.14±0.76 41.39±0.80 42.03±0.81 57.00±0.30 28.63±1.93 37.10±2.23 47.39±1.38
SCR (Mai et al., 2021) 75.89±0.47 57.90±2.45 87.91±1.82 60.38±0.25 63.02±3.71 78.73±0.48 36.74±1.72 30.54±0.99 34.56±1.26 26.53±1.00 27.59±0.96 29.88±0.93
ODDL (Ye et al., 2022) 75.91±0.87 61.89±4.47 88.61±1.50 61.02±0.60 65.25±1.01 83.58±0.69 53.16±1.18 42.89±0.64 61.19±0.78 42.46±0.30 44.26±1.26 56.33±0.36
MEMO (Zhou et al., 2023) 72.59±0.18 63.29±5.07 86.33±1.81 57.88±1.30 61.67±2.32 79.04±0.82 39.48±0.73 37.53±0.64 50.06±0.13 22.46±1.40 33.27±2.39 36.02±1.21
X-DER (Boschini et al., 2023) 75.99±1.22 65.69±4.05 83.28±2.05 57.73±0.76 66.59±2.45 76.63±0.32 47.22±1.21 43.72±0.56 50.73±0.78 36.81±0.56 46.20±0.53 47.59±0.33

EARL (Ours) 78.54±0.48 66.16±0.84 88.10±0.58 69.77±0.05 71.46±1.84 86.00±0.17 57.65±1.30 45.15±0.05 67.09±0.69 48.05±0.67 47.27±0.69 63.69±0.76

TinyImageNet ImageNet-200

Disjoint Gaussian-Scheduled Disjoint Gaussian-Scheduled
Method AAUC ↑ Alast ↑ AOA ↑ AAUC ↑ Alast ↑ AOA ↑ AAUC ↑ Alast ↑ AOA ↑ AAUC ↑ Alast ↑ AOA ↑
EWC (Kirkpatrick et al., 2017) 37.57±0.83 27.43±0.89 49.58±0.42 26.35±0.84 25.61±0.23 37.77±0.25 41.85±0.64 31.57±0.76 64.10±0.26 32.22±0.27 32.71±0.94 54.68±0.31
ER (Rolnick et al., 2019) 37.29±0.81 27.04±0.40 49.66±0.39 26.37±0.90 25.92±0.38 37.66±0.50 41.65±0.62 32.18±0.22 64.22±0.23 32.43±0.51 32.85±0.27 54.72±0.50
ER-MIR (Aljundi et al., 2019) 37.73±0.84 27.40±0.22 48.05±0.15 24.00±0.73 25.10±0.41 32.34±0.46 39.88±0.44 33.27±0.66 59.87±0.14 28.65±0.26 33.30±1.84 48.36±0.44
REMIND (Hayes et al., 2020) 29.05±0.83 27.30±0.59 36.43±0.83 10.22±0.93 16.59±0.70 16.85±1.17 38.32±0.73 31.60±0.46 39.80±1.85 30.46±0.37 33.36±0.82 38.13±1.17
DER++ (Buzzega et al., 2020) 39.24±0.80 29.77±1.16 49.30±0.81 27.27±2.13 31.40±0.89 40.19±1.47 44.67±0.17 32.65±0.54 65.74±0.21 37.11±0.28 37.85±0.74 59.81±0.33
SCR (Mai et al., 2021) 34.07±1.16 24.24±0.43 33.28±0.93 25.62±0.90 24.28±0.24 29.36±0.41 41.94±0.31 28.53±0.37 61.97±0.40 33.27±0.46 31.41±0.31 54.12±0.48
MEMO (Zhou et al., 2023) 27.84±0.38 27.52±0.52 37.35±0.26 9.45±0.60 17.30±0.65 17.50±0.49 38.68±0.39 31.70±0.53 58.92±0.53 32.09±0.26 35.95±1.40 50.88±0.10
X-DER (Boschini et al., 2023) 35.68±0.38 27.15±1.66 41.36±1.41 23.51±2.43 24.80±4.06 32.17±3.71 44.03±0.37 33.58±1.17 56.40±0.08 34.92±0.24 38.29±1.12 53.75±0.23

EARL (Ours) 42.19±1.18 29.50±0.78 56.41±0.08 34.79±0.67 31.68±0.21 49.77±0.13 45.01±0.36 34.25±0.69 67.08±0.34 39.04±0.22 38.95±0.50 60.80±0.13

Table 4. Comparison of online CL methods on Disjoint and Gaussian Scheduled Setup for CIFAR-10, CIFAR-100, TinyImageNet and
ImageNet-200 with computational constraint.

Method CLEAR10 CLEAR100
AAUC ↑ Alast ↑ AOA ↑ AAUC ↑ Alast ↑ AOA ↑

EWC 70.88±1.15 69.46±2.40 76.96±1.16 45.74±0.40 47.61±0.54 46.15±0.28
ER 70.70±1.22 68.86±3.00 76.65±1.12 45.59±0.91 47.89±1.11 46.05±0.18

ER-MIR 68.21±0.94 65.58±2.33 74.53±1.10 43.21±1.03 46.60±1.21 42.24±0.47
REMIND 66.48±1.93 66.91±1.19 72.34±1.78 36.67±0.76 47.90±0.58 35.49±0.09
DER++ 71.93±0.90 70.41±2.67 77.51±1.47 47.34±0.63 49.63±0.75 47.02±0.33
SCR++ 73.32±0.85 70.81±1.69 77.90±1.11 44.67±0.77 44.70±0.72 46.15±0.28
MEMO 65.04±1.72 62.64±2.67 71.94±1.80 44.35±0.54 46.47±1.58 41.24±0.12
PoLRS 65.65±1.88 61.06±6.17 71.67±1.53 41.17±1.83 41.62±2.56 40.15±1.50
X-DER 69.77±0.85 68.67±3.04 74.76±1.23 44.76±1.21 49.01±1.31 43.60±0.65

EARL 77.85±0.96 76.51±1.97 81.51±1.17 56.97±0.25 59.03±1.09 55.35±0.06

Table 5. Comparison of online CL methods on CLEAR-10/100 with computational constraint.

7. Comparison of Computational Budget (L)

EARL requires an additional computation for residual cor-
rection, which calculates k nearest features, and FLOPs of
additional cost can be formulated as d×N×3+k×N , where
d is the dimension of stored features, N is the total num-

ber of feature-residual pairs, and k denotes topk in k-NN.
The first term is for calculating the distances between the
stored features and the feature of the inference image and is
multiplied by 3 since it involves subtraction, squaring, and
addition operations. The second term is the cost of select-
ing topk features among N features. Compared to the cost



incurred by the naive inference process, which requires for-
ward flops of the model, it involves a very minimal amount
of additional cost. Taking the example of ImageNet-200
with the ResNet-18 architecture that has 1

3 GFLOPs in the
model forward, only 0.5% of additional cost is consumed,
since we use N = 2, 000(= 10× 200) and k = 15.

8. Details About Experiment Setup (L404)

This paper focuses on online class-incremental learning
in two types of setups: disjoint [35] and Gaussian sched-
uled [8] [45, 51]. In the disjoint setup, each class is assigned
to a specific task, i.e., tasks do not share any classes. On
the other hand, in the Gaussian scheduled setup, the arrival
time of each class follows a Gaussian distributionN (µi, σ).
Since the class distribution is shifted every time step, the
Gaussian scheduled setup is a boundary-free setup. We set
σ to 0.1 and µi, mean of the class i, to i

N , where N is the
number of classes.

9. Effect of k

k, which is a hyperparameter that determines the number
of the nearest features from the inference image used to
weight-sum to calculate the residual, has a negligible im-
pact, except for k = 1 as incorrect residual largely affects
predictions. We illustrate the consistency of accuracy at var-
ious values of k in Fig. 3.

1 5 10 15 20 25 30 35 40
number of k

72

75

78

81

A A
U

C

1 5 10 15 20 25 30 35 40
number of k

64

66

68

A l
as

t

Figure 3. Performance variations of AAUC and Alast with respect
to the change in k in the CIFAR-10 disjoint setup.

10. Hyperparameters (L428)

For all methods, we use Adam optimizer [7] with a constant
learning rate (LR) of 0.0003. For data augmentation, we
use RandAugment [2]. For hyperparameters such as iter-
ation, memory size, and number of tasks for each dataset,
we follow prior works [2, 27, 40]. Specifically, we set
the number of iterations as 1, 3, 3, 0.25, and 0.25, and
memory sizes as 500, 2,000, 4,000, 4,000, and 10000 for
the CIFAR-10, CIFAR-100, TinyImageNet, ImageNet-200,
and ImageNet-1k datasets, respectively. To ensure a fair
comparison among methods, we use the same batch size
in all methods. Specifically, we use 16, 32, 32, 256, and
256 for CIFAR-10, CIFAR-100, TinyImageNet, ImageNet-
200, and ImageNet-1k datasets, respectively. Note that the
number of preparatory data is included in the batch size for

EARL, i.e., batch size = the number of retrieved samples
from memory + the number of preparatory data.

To ensure that EARL does not depend on a specific
dataset, we use the following hyperparameters for all
datasets: τ = 0.9, k = 15, d = 4096 and λ = 1, where
τ refers to the temperature parameter during residual cor-
rection, k refers to the number of samples for topk in k-NN
during residual correction, d refers to the output dimension
of the projection layer, and λ refers to the loss balancing
parameter between real data training and preparatory data
training. In addition, for N , the total number of stored
feature-residual pairs in EARL, we used N = 10 ∗ |C| for
all dataset, where |C| is the number of classes seen so far.

11. Implementation of Baselines (L587)
Some of the baselines assumed multi-epoch training, i.e.,
offline CL, so we modified them to be used in online CL for
comparisons with our proposed method and other baselines.

REMIND. Remind is a feature-replay method and freezes
front layers after base initialization, offline training phase
using a subset of the data during the initial stage of train-
ing. We modified the base initialization of REMIND [20]
to be suitable for use in online CL. In offline CL setup, RE-
MIND freezes 7 layers after base initialization. However,
as shown in Table 6, in online CL, it is not suitable to freeze
many layers compared to offline CL, as the model is not
sufficiently trained. We studied various numbers of frozen
layers and revealed that freezing 6 layers (i.e., 3 blocks) is
the optimal number for freezing in ResNet-18 in CIFAR-
10 and CIFAR-100. Compared to freezing 7 layers, which
is the original proposed freezing criterion, REMIND per-
formed comparatively well when freezing 6 layers in the
online CL, despite the decrease in the number of stored fea-
tures due to the larger sizes of stored features. Regarding the
hyperparameters used in REMIND, such as the size of the
codebook and the number of codebooks for product quanti-
zation, we performed additional hyperparameter search ex-
periments with CIFAR-100, as shown in Table 7, and used
the same hyperparameter in all remaining datasets.

For CIFAR-10, CIFAR-100, and TinyImageNet, which
have a relatively small number of images, we increased the
proportion of the initialization sample base from 10% to
60% of the total samples, since 10% images are not enough
for the lower level layers to represent highly transferable
features, leading to low performance. In ImageNet-200 and
ImageNet-1k, we followed the original setting (i.e., 10%
base initialization samples and freezing 7 layers after base
initialization), following [20].

MEMO. MEMO [63] retrieves samples that are relatively
close to the class mean feature at every task boundary and



Frozen Layers
CIFAR-10 CIFAR-100

Disjoint Gaussian-Scheduled Disjoint Gaussian-Scheduled
AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

4 Layers 66.63±1.24 46.24±0.12 54.55±0.71 45.56±1.54 38.73±0.27 30.19±0.66 23.76±0.86 26.94±0.37
5 Layers 70.11±0.66 51.01±0.79 56.47±0.96 52.00±1.94 41.87±0.05 38.81±0.41 24.79±1.73 32.12±2.81
6 Layers 69.55±0.91 47.28±3.92 57.15±0.71 53.40±0.70 41.92±0.06 37.64±1.09 25.56±1.10 34.08±1.02
7 Layers 68.59±0.10 53.71±2.27 55.37±0.60 52.53±1.98 40.52±0.17 37.42±0.81 23.94±1.30 33.28±1.43

Table 6. REMIND performance as a function of the number of frozen layers in ResNet-18 with CIFAR-10 and CIFAR-100. Rather than
freezing all the layers except the last layer (i.e., freezing 7 Layers), continuously updating the last two layers and fixing the rest (i.e.,
freezing 6 Layers) shows the best performance due to the limitation of online CL.

♯ of Codebooks
CIFAR-100

Disjoint Gaussian-Scheduled
AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

8 41.07±0.27 36.97±0.27 25.17±1.02 34.14±1.18
16 41.84±0.29 36.48±0.34 25.37±0.99 33.30±0.26
32 41.92±0.06 37.64±1.09 25.56±1.10 34.08±1.02
64 40.13±0.15 33.50±0.46 24.39±0.85 29.48±0.04

Codebook Size
CIFAR-100

Disjoint Gaussian-Scheduled
AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

256 41.92±0.06 37.64±1.09 25.56±1.10 34.08±1.02
512 41.48±0.19 36.98±0.51 25.85±1.39 33.01±1.99

1024 41.28±0.18 36.48±0.34 25.13±0.90 31.83±0.19
2048 41.11±0.21 36.10±0.33 25.05±0.90 31.33±0.11

Table 7. REMIND performance as a function of different codebook sizes and number of codebooks with CIFAR-100. Original hyper-
parameters (codebook size: 256, number of codebooks: 32) consistently show the best performance in the online CL setting. The same
hyperparameters were used uniformly for all datasets.

stores them in episodic memory for replay. However, in
online CL, the model can not access all data for the current
task, i.e., it continuously updates the memory using stream
data from the current task. Therefore, the sampling strategy
of MEMO is replaced by class-balanced random sampling,
which is used to replace the sampling strategy of RM [2] for
online CL in [27].

12. Comparison between NC-FSCIL and
Vanilla ETF

NC-FSCIL [56] is a recently proposed offline CL method
that attempts to induce neural collapse in few-shot class in-
cremental learning (FSCIL), a CL setup with few training
samples per class. NC-FSCIL uses the fixed ETF classifier,
a backbone network f , and a projection layer. It freezes the
backbone network after training the base task and further
fine-tunes the projection layer in the following incremental
tasks by using the replay memory M(t), which stores the
class-wise mean features hc retrieved from the backbone
network for each old class c as follows:

M(t) =

hc|c ∈
t−1⋃
j=0

C(j)

 , 1 ≤ t ≤ T, (1)

where hc = Avgi {f (xi, θ) |yi = c}, T refers to the total
number of tasks, and C(j) refers to the set of classes for
task j.

Considering that our setup is neither an offline CL nor
a few-shot class incremental learning setup, for a fair com-
parison with online CL methods, we modify the freezing

strategy of NC-FSCIL. Instead of freezing the whole back-
bone, we freeze only 6 layers, which achieved the best per-
formance in online CL as shown in Table 6.

Despite the high performance of NC-FSCIL in offline
CL, it has a lower performance than that of vanilla ETF
(i.e., baseline of EARL without preparatory data training
and residual correction) in online CL, as shown in Tab. 8.

13. Pseudocode for the Our Method (L428)

Algorithm 1 and Algorithm 2 provide detailed pseudocode
for EARL.

14. Detailed analysis of ablation results (L509)

Note that exclusively relying on residual correction with-
out the training of preparatory data may result in the addi-
tion of incorrect residuals due to bias problem, as illustrated
in Fig. 4-(a). The bias in CL causes the features of novel
classes and old classes to overlap. When the features of
multiple classes are clustered together, as in Fig.4-(a), resid-
uals of one class can be added to the residual-correcting
term of other classes in the cluster, since we select the resid-
uals using k nearest-neighbors of corresponding features.
Thus, the residuals of old classes are often added to novel
class samples and vice versa, hurting the accuracy of both
old and novel classes.

In this context, the use of preparatory data not only accel-
erates the convergence of ETF during training, but also pro-
motes accurate residual addition during inference. In con-
clusion, the combination of residual correction and prepara-



Methods
CIFAR-10 CIFAR-100

Disjoint Gaussian-Scheduled Disjoint Gaussian-Scheduled
AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

NC-FSCIL 68.09±0.69 48.05±1.69 53.12±0.77 46.11±0.36 39.54±0.79 34.83±1.27 30.91±1.46 35.73±1.13
Vanilla ETF 75.27±0.77 62.10±4.12 65.80±0.25 67.79±0.78 52.91±1.05 41.08±0.60 33.34±0.55 44.45±0.48

Table 8. Comparison between NC-FSCIL and Vanilla ETF (EARL w/o Preparatory data training and Residual correction) on CIFAR-10
and CIFAR-100.

Algorithm 1 Training Phase

1: Input model fθ, MemoryM, Residual MemoryMRES, Training data stream D, ETF classifier W, Negative transfor-
mationRr, Learning rate µ

2: for (x, y) ∈ D do ▷ Sample arrives from training data stream D
3: UpdateM← ClassBalancedSampler (M, (x, y)) ▷ Update memory
4: Sample (X,Y )← RandomRetrieval(M) ▷ Get batch (X,Y ) from memory
5: Sample (X ′, Y ′)← RandomRetrieval(M) ▷ Get batch (X ′, Y ′) to make preparatory data
6: (Xp, Yp)← Rr(X

′, Y ′) ▷ Negative transformation for preparatory data training

7: f̂θ(X) = fθ(X)
|fθ(X)| , f̂θ(Xp) =

fθ(Xp)
|fθ(Xp)| ▷ Normalize model output

8: r = WY − f̂θ(X) ▷ Calculate Residuals

9: UpdateMRES ←
(
f̂θ(X), r

)
▷ Update feature-residual memory

10: L(X,Y,Xp, Yp; θ,W) = LDR(f̂θ(X),WY ) + LDR(f̂θ(Xp),WYp) ▷ Calculate dot-regression loss
11: Update θ ← θ − µ · ∇θL(X,Y,Xp, Yp; θ,W) ▷ Update model
12: end for
13: Output fθ

Algorithm 2 Inference Phase

1: Input model fθ, inference input xeval, Residual Memory MRES, ETF classifier W, number of nearest neighbors k,
softmax temperature τ

2: {(ĥi, ri)}|MRES|
i=1 ←MRES ▷ Get residual and features from residual memory

3: f̂θ(xeval) =
fθ(xeval)
|fθ(xeval)| ▷ Normalize model output

4: {n1, n2, ..., nk} ← k- argmini

(∣∣∣f̂θ(xeval)− ĥi

∣∣∣) ▷ Calculate k nearest neighbor features

5: sni
= e−(f̂(xeval)−ĥni

)/τ∑k
j=1 e

−(f̂(xeval)−ĥnj
)/τ

▷ calculate residual weights

6: r =
∑k

i=1 sni
rni

▷ Calculate residual-correcting term

7: f̂θ(xeval)corrected ← f̂θ(xeval) + r ▷ Add residual on features
8: ypred = argmaxy(CosineSimilarity(Wy, f̂θ(xeval)corrected)) ▷ Predict class
9: Output ypred

tory data training effectively aligns the model output with
the corresponding ETF classifier, as demonstrated in Fig. 4-
(b).

15. Properties of Neural Collapse

(NC1) Collapse of Variability: The last layer feature out-
put of each data point collapses toward the class mean fea-
ture of its respective class. In other words, hk,i, last layer
feature of sample i in class k, collapse to µk =

∑nk

i=1 hk,i

for ∀k ∈ [1,K] where nk is the number of samples for class
k. By considering within-class covariance and between-
class covariance

ΣW =
1

K

K∑
k=1

1

nk
(

nk∑
i=1

(hk,i − µk)),

ΣB =
1

K

K∑
k=1

(µk − µG),

(2)
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(a) wrong residual added (b) correct residual added

Figure 4. Without preparatory data training and relying solely on
residual correction, incorrect residuals can be added due to bias,
which can potentially lead to decreased performance. On the other
hand, the combination of preparatory data training and joint train-
ing leads to the addition of correct residuals by addressing the bias
problem.

where µG =
∑K

k=1 µk, empirical variability can be mea-
sured as

NC1 :=
1

K
trace(ΣWΣ†

B). (3)

(NC2) Convergence to simplex equiangular tight
frame (ETF): Class means µk(k ∈ [1,K]) centered by
the global mean µG converge to vertices of a simplex ETF
structure, i.e., matrix M = [m1 m2 · · · mK ] where mk =

µk−µG

∥µk−µG∥2 satisfies the following equation:

MMT =
1

K − 1
(KIK − 1K1T

K). (4)

The degree of convergence can be measured using:

MMT

∥MMT ∥F
− 1√

K − 1
(IK −

1

K
1K1T

K). (5)

(NC3) Convergence to self-duality: Classifier W con-
verges to the simplex ETF M formed by recentered feature
mean, and during this convergence, the classifier vector wk

aligns with their corresponding feature mean mk where wk

means classifier weight for class k, k ∈ [1,K], i.e.,

M
∥M∥F

=
W
∥W∥F

(6)

Duality can be measured by measuring:

WMT

∥WMT ∥F
− 1√

K − 1
(IK −

1

K
1K1T

K). (7)
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