
A. Proof of Proposition 1
Definition 1 (Sample-wise deviation bound) Let x 2 Or denote a training example belonging to class r. The sample-wise

deviation bound is given by

D(x) =

⇣
1� P

(r)
r

⌘
�r|Or|Sr(x)

P
j 6=r

P
(j)
r �j |Oj |Sj(x)

, (6)

where P
(y)
z = 1

|Oy|

P
i2Oy

pz(xi) is the average prediction score of the samples in a class y to a class z, �y =
1

|Oy|

P
i2Oy

k�(xi)k2 is the average feature norm of the examples in class y, and Sy(x) = 1
|Oy|

P
i2Oy

h�(x),�(xi)i
denotes the average feature similarity to a sample x.

Proposition 1 When D(x) ⌧ 1, the local updates {� y}y2Y are prone to deviate from the expected direction, i.e.,

� r�(x) < 0 and � j�(x) > 0.

To minimize the classification error for x 2 Or, we expect � r�(x) > 0 and � j�(x) < 0 for all j 6= r, increasing the
probability pr(x) =

exp (r�(x))P
k2Y exp(k�(x))

. Following [42], we derive the update process for by

� r = ⌘

X

xi2Or

(1� pr(xi))�(xi)� ⌘

X

j 6=r

X

xi2Oj

pr(xi)�(xi)

⇡ ⌘

⇣
1� P

(r)
r

⌘ X

xi2Or

�(xi)� ⌘

X

j 6=r

P
(j)
r

X

xi2Oj

�(xi), (7)

where ⌘ is a learning rate. Then, � r�(x) can be formulated as

� r�(x) = ⌘

⇣
1� P

(r)
r

⌘ X

xi2Or

�(xi) · �(x)� ⌘

X

j 6=r

P
(j)
r

X

xi2Oj

�(xi) · �(x)

= ⌘

⇣
1� P

(r)
r

⌘
k�(x)k2
|Or|

X

xi2Or

k�(xi)k2
X

xj2Or

h�(xj),�(x)i � ⌘

X

j 6=r

P
(j)
r

k�(x)k2
|Oj |

X

xi2Oj

k�(xi)k2
X

xj2Oj

h�(xj),�(x)i

= ⌘

⇣
1� P

(r)
r

⌘
k�(x)k2 �r|Or|Sr(x)� ⌘

X

j 6=r

P
(j)
r

k�(x)k2 �j |Oj |Sj(x)

= ⌘ k�(x)k2

X

j 6=r

P
(j)
r

�j |Oj |Sj(x)

! ⇣
1� P

(r)
r

⌘
�r|Or|Sr(x)

P
j 6=r

P
(j)
r �j |Oj |Sj(x)

| {z }
D(x)

�1

!
, (8)

where the deviation bound D(x) in Definition 1 is derived. For the second equality, we assume that the cosine similarity of
different �(x) is independent with the L2-norm of �(x). In this equation, � r�(x) becomes negative when D(x) ⌧ 1,3
which suggests that the local updates are more likely to deviate from the expected direction with a lower value of D(x).

Similarly, � j�(x) is described as

� j�(x) = ⌘ k�(x)k2

✓
�j |Oj |Sj(x)�

X

k2Y

P
(k)
j

�k|Ok|Sk(x)

◆
. (9)

By taking the average of Eq. (9) over all classes excluding the class r, we get

3Due to the common practice of employing activation functions like ReLU, the feature output �(·) is always non-negative, and consequently, the average
feature similarity Sy(·) is also non-negative for any y 2 Y . This indicates that the sign of � r�(x) is solely affected by D(x).

1

|Y|� 1

X

j 6=r

� j�(x) =
⌘ k�(x)k2
|Y|� 1

0

@
X

j 6=r

�j |Oj |Sj(x)�
X

j 6=r

X

k2Y

P
(k)
j

�k|Ok|Sk(x)

1

A

=
⌘ k�(x)k2
|Y|� 1

0

@
X

j 6=r

�j |Oj |Sj(x)�
X

k2Y

X

j 6=r

P
(k)
j

�k|Ok|Sk(x)

1

A

=
⌘ k�(x)k2
|Y|� 1

0

@
X

k 6=r

�j |Ok|Sk(x)�
X

k2Y

(1� P
(k)
r

)�k|Ok|Sk(x)

1

A

=
�⌘ k�(x)k2
|Y|� 1

�r|Or|Sr(x)�

X

k2Y

P
(k)
r

�k|Ok|Sk(x)

!

=
�⌘ k�(x)k2
|Y|� 1

X

j 6=r

P
(j)
r

�j |Oj |Sj(x)

! ⇣
1� P

(r)
r

⌘
�r|Or|Sr(x)

P
j 6=r

P
(j)
r �j |Oj |Sj(x)

| {z }
D(x)

�1

!
, (10)

where the same D(x) is derived, suggesting that there exists j 2 Y \ r for which � j�(x) becomes positive if D(x) ⌧ 1.
Both Eqs. (8) and (10) present that lower values of D(x) are likely to lead to gradient deviations. ⇤

B. Mitigating Local Gradient Deviations via SCL

By Proposition 1, our objective is improving D(x) to prevent local gradient deviations. Assuming that Sr(x)P
j 6=r

Sj(x)
�

1
|Y|�1 ,

we derive the lower bound of D(x) as

D(x) =

⇣
1� P

(r)
r

⌘
�r|Or|Sr(x)

P
k 6=r

P
(k)
r �k|Ok|Sk(x)

=
Sr(x)

P
k 6=r

min
j 6=r

n
P

(k)
r �k|Ok|

P
(j)
r �j |Oj |

o
Sk(x)

(1� P
(r)
r

)�r|Or|min
j 6=r

(
1

P
(j)
r �j |Oj |

)

�
Sr(x)P

j 6=r

Sj(x)
(1� P

(r)
r

)�r|Or|min
j 6=r

(
1

P
(j)
r �j |Oj |

)
(11)

�

⇣
1� P

(r)
r

⌘
�r|Or|

|Y|� 1
min
j 6=r

(
1

P
(j)
r �j |Oj |

)
, (12)

which suggests that encouraging each sample to satisfy 1
|Y|�1

P
j 6=r

Sj(x)�Sr(x)  0 increases the difficulty of encountering

D(x) ⌧ 1, thereby alleviating local gradient deviations. Thus, we formulate the surrogate objective to minimize

max
⇣
0,

1

|Y|� 1

X

j 6=r

Sj(x)� Sr(x)
⌘
. (13)

Using max{a1, . . . , an}  LogSumExp(a1, . . . , an), the upper bound of the objective is

max
⇣
0,

1

|Y|� 1

X

j 6=r

Sj(x)� Sr(x)
⌘

 log

exp(0) + exp

⇣X

j 6=r

1

|Y|� 1
Sj(x)� Sr(x)

⌘!

= log

0

@exp(�Sr(x))

✓
exp(Sr(x)) + exp

⇣X

j 6=r

1

|Y|� 1
Sj(x)

⌘◆
1

A

= log
⇣
exp(�Sr(x))

⌘
+ log

✓
exp(Sr(x)) + exp

⇣X

j 6=r

1

|Y|� 1
Sj(x)

⌘◆

= � log

exp(Sr(x))

exp(Sr(x)) + exp
�P

j 6=r

1
|Y|�1Sj(x)

�
!

= � log

exp(1

|Or|

P
xi2Or

h�(x),�(xi)i)

exp(1
|Or|

P
xi2Or

h�(x),�(xi)i) + exp(
P

j 6=r

1
|Y|�1

1
|Oj |

P
xi2Oj

h�(x),�(xi)i)

!

 � log

exp(1

|Or|�1

P
xi2Or\x

h�(x),�(xi)i)

exp(1
|Or|�1

P
xi2Or\x

h�(x),�(xi)i) + exp(
P

j 6=r

1
|Y|�1

1
|Oj |

P
xi2Oj

h�(x),�(xi)i)

!

 � log

exp(1

|Or|�1

P
xi2Or\x

h�(x),�(xi)i)

exp(1
|Or|�1

P
xi2Or\x

h�(x),�(xi)i) +
1

|Y|�1

P
j 6=r

exp(1
|Oj |

P
xi2Oj

h�(x),�(xi)i)

!
(I⇤)

 � log

exp(1

|Or|�1

P
xi2Or\x

h�(x),�(xi)i)
1

|Or|�1

P
xi2Or\x

exp(h�(x),�(xi)i) +
1

|Y|�1

P
j 6=r

1
|Oj |

P
xi2Oj

exp(h�(x),�(xi)i)

!
(II⇤)

 � log

exp(1

|Or|�1

P
xi2Or\x

h�(x),�(xi)i)
P

xi 6=x exp(h�(x),�(xi)i)

!

=
�1

|Or|� 1

X

xi2Or\x

log

exp(h�(x),�(xi)i)P

xk 6=x exp(h�(x),�(xk)i)

!
, (14)

where (I⇤) and (II⇤) come from Jensen’s inequality. ⇤

C. Additional Experiments
Quantity-based data heterogeneity configurations Beside distribution-based data heterogeneity, we additionally employ
quantity-based heterogeneity configurations for comprehensive evaluation. Let assume M training samples are distributed
among N clients. We initially organize the data by class labels and split it into � · N groups, with each group having M

�·N

samples. Note that there is no overlap in the samples held by different clients in these settings. Our framework consistently
exhibits superior performance as evidenced in Table A, which verifies the robustness of our framework across diverse data
heterogeneity scenarios.

Integration into server-side optimization approaches To supplement Table 5 in the main paper, we evaluate other recent
client-side approaches [33, 42] combined with various server-side algorithms [9, 14, 27] for additional comparisons. As
shown in Table B, our framework consistently outperforms FedLC and FedDecorr on top of existing server-side frameworks.

Other backbone networks We evaluate FedRCL using different backbone architectures, including VGG-9 [34],
MobileNet-V2 [31], ShuffleNet [43], and SqueezeNet [11] on CIFAR-100, where we set � to 2 for MobileNet and 1 for
others. According to Table C, FedRCL outperforms other algorithms by large margins regardless of backbone architectures,
which shows the generality of our approach.

Table A. Results from quantity-based data heterogeneity configurations over 100 distributed clients on the three benchmarks.

CIFAR-10 CIFAR-100 Tiny-ImageNet
� = 2 � = 5 � = 20 � = 50 � = 20 � = 50

Method 500R 1000R 500R 1000R 500R 1000R 500R 1000R 500R 1000R 500R 1000R

FedAvg [22] 37.22 52.88 71.57 82.04 37.94 44.39 44.31 50.02 23.59 28.30 30.32 32.83
FedLC [42] 28.24 35.69 77.06 83.65 41.35 46.62 44.11 48.65 27.90 29.21 33.24 34.92
FedDecorr [33] 42.93 60.63 74.49 82.15 39.63 46.40 44.62 50.30 22.74 27.20 29.92 32.62
FedRCL (ours) 55.01 71.66 81.19 87.66 51.09 59.78 58.05 63.50 26.53 33.43 34.18 41.49

Table B. Integration of client-side approaches into various server-side approaches under non-i.i.d. setting (↵ = 0.3).

CIFAR-10 CIFAR-100 Tiny-ImageNet
Method 500R 1000R 500R 1000R 500R 1000R

FedAvgM [10] 80.56 85.48 46.98 53.29 36.32 38.51
FedAvgM + FedLC 82.03 86.41 46.96 52.91 37.76 40.50
FedAvgM + FedDecorr 80.57 85.51 46.31 53.11 34.66 36.95
FedAvgM + FedRCL (ours) 84.62 88.51 60.55 64.61 43.11 47.23
FedADAM [27] 75.91 81.82 47.99 52.81 36.33 39.74
FedADAM + FedLC 77.96 82.11 49.76 53.15 39.04 42.12
FedADAM + FedDecorr 76.44 82.21 48.62 53.48 35.92 39.38
FedADAM + FedRCL (ours) 80.71 85.69 52.86 57.84 38.34 42.27
FedACG [14] 85.13 89.10 55.79 62.51 42.26 46.31
FedACG + FedLC 85.89 89.61 57.18 62.09 43.43 44.57
FedACG + FedDecorr 85.20 89.48 57.95 63.02 43.09 44.52
FedACG + FedRCL (ours) 86.43 89.67 62.82 66.38 45.97 47.97

Table C. Experimental results with different backbone architecture on the CIFAR-100 dataset under non-i.i.d. setting (↵ = 0.3).

SqueezeNet ShuffleNet VGG-9 MobileNet-V2

FedAvg [22] 39.62 35.37 45.60 43.57
+ FitNet [29] 37.78 36.18 45.35 43.89
FedProx [21] 38.86 35.37 45.32 43.09
MOON [19] 24.16 34.17 52.13 34.05
FedMLB [15] 41.95 41.61 54.36 47.09
FedLC [42] 42.35 37.79 48.46 45.51
FedNTD [18] 40.33 40.14 50.78 44.85
FedProc [23] 31.45 35.23 43.14 23.60
FedDecorr [33] 40.23 38.77 47.32 47.31
FedRCL (ours) 49.34 44.50 55.53 51.32

Larger number of local epochs To validate the effectiveness in conditions of more severe local deviations, we evaluate
our framework by increasing the number of local epochs to E = 10. Table D presents consistent performance enhancements
of FedRCL in the presence of more significant local deviations.

D. Qualitative Results
Convergence plot Figure A visualizes the convergence curves of FedRCL and the compared algorithms on CIFAR-10 and
CIFAR-100 under non-i.i.d. setting (↵ = 0.05), where our framework consistently outperforms all other existing federated
learning techniques by huge margins throughout most of the learning process.

Sensitivity on the weight of divergence penalty We examine the robustness of our framework by varying the divergence
penalty weight � 2 {0, 0.1, 0.2, 0.5, 1, 2, 5} on the CIFAR-100 in non-i.i.d. settings. Figure B presents consistent perfor-
mance enhancements over a wide range of �, which demonstrates its stability.

Table D. Experimental results with an increased number of local epochs (E = 10) under non-i.i.d. setting (↵ = 0.05).

CIFAR-10 CIFAR-100 Tiny-ImageNet
↵ = 0.05 ↵ = 0.3 ↵ = 0.05 ↵ = 0.3 ↵ = 0.05 ↵ = 0.3

500R 1000R 500R 1000R 500R 1000R 500R 1000R 500R 1000R 500R 1000R

Baseline 56.80 68.52 77.79 83.78 34.64 42.35 41.47 47.49 22.38 23.65 32.49 34.58
FedLC [42] 60.81 69.59 79.58 84.71 36.83 43.99 42.7 48.04 25.73 27.51 33.38 35.30
FedDecorr [33] 58.34 68.64 80.55 84.91 34.91 41.84 42.73 49.25 21.48 22.54 30.65 33.06
FedRCL (ours) 74.02 78.97 86.58 89.40 49.64 55.91 60.58 64.73 31.01 37.70 44.74 48.51

(a) CIFAR-10 (b) CIFAR-100

Figure A. Convergence curve of FedRCL, along with other compared methods, on the CIFAR-10 and CIFAR-100 with non-i.i.d. setting
(↵ = 0.05). Accuracy at each round is based on the exponential moving average result with parameter 0.9.

(a) ↵ = 0.1 (b) ↵ = 0.3

Figure B. Ablative results by varying the weight of the divergence penalty (�) on the CIFAR-100 dataset with ↵ 2 {0.1, 0.3}, which
exhibits stability across a wide range.

E. Experimental Detail

Hyperparameter selection To reproduce the compared approaches, we primarily follow the settings from their original
papers, adjusting the parameters only when it leads to improved performance. In client-side federated learning approaches,
we use 0.001 in FedProx, 0.3 in FedNTD, and 0.01 in FedDecorr, for �. We set � to 0.001 in FitNet, while �1 and �2 are
both set to 1 in FedMLB. µ in MOON and ⌧ in FedLC are both set to 1. We adopt � of 0.7, � of 1, and ⌧ of 0.05 in FedRCL.
For server-side algorithms, � in FedAvgM is set to 0.4 while �1, �2, and ⌧ in FedADAM are set to 0.9, 0.99, and 0.001,
respectively. We use � of 0.85 and � of 0.001 in FedACG.

Visualization of local data distribution We visualize the local data distribution at each client on the CIFAR-100 under
diverse heterogeneity configurations in Figure C, where the Dirichlet parameter ↵ is varied by {0.05, 0.1, 0.3, 0.6}. Lower
values indicate more skewed distributions.

(a) ↵ = 0.05 (b) ↵ = 0.1 (c) ↵ = 0.3 (d) ↵ = 0.6

Figure C. Label distributions at each local client under various heterogeneity configurations with ↵ 2 {0.05, 0.1, 0.3, 0.6} on the CIFAR-
100. y-axis represents the ratio of data samples in each class to the total dataset, while x-axis is sorted based on the number of samples.

