BANF': Band-limited Neural Fields for Levels of Detail Reconstruction

Supplementary Material

1. Radiance field decomposition

We extend the application of our frequency decomposition
technique to the color field in neural radiance fields. Here,
we adopt the spherical harmonics (SH) representation pro-
posed in Plenoxels [3] and [10] to perform color frequency
decomposition. Specifically, in addition to implementing
frequency-bounded grids for the density field, we apply fre-
quency constraints to the Spherical Harmonics (SH) coef-
ficients. At each level of detail, both the density and SH
coefficients are queried at a specific resolution and then tri-
linearly interpolated to determine the density and SH coef-
ficients of the target point. Subsequently, the computed SH
coefficients are transformed into RGB values. It’s important
to note that, due to the linearity of spherical harmonics, con-
straining the frequency of SH coefficients directly imposes
a constraint on the predicted color frequency. Further, both
the density and color heads are trained using the previously
proposed cascaded scheme. = We compare the results of
this method to a vanilla iNGP queried at target resolutions
at test time. In Figure 1, we report superior performance to
the baseline, highlighting the robustness of our method to
aliasing effects.

Implementation. We train iNGP and our variation of it for
50K iterations with a batch size of 4096 rays. We evaluate
our method on the NeRF Synthetic Dataset [8] at resolu-
tions {642, 1282}, while the input images are at 8007 res-
olution. These evaluations are performed using grid reso-
lutions {323, 643} respectively, which were empirically de-
termined to yield the best results. The SH coefficients of
second order were used similar to [3] and [10]. Further, we
note that we do not employ the extra skip connection from
hash grid to the color MLP, as the color is being filtered.

2. Image filtering (cont’d)

We show additional quantitative and qualitative results on
the DIV2K [1] dataset in Figure 2 and Table 1. Our method
is trained on original images downsampled to 2562 reso-
lution and compared to BACON [7] and PNF [5], trained
in a similar fashion. The networks are trained on 5K sam-
ples of the images. Evaluation is done at resolution 5122,
comparing to original images downscaled to this resolution
to compute PSNR. Qualitative results are shown at resolu-
tions {642, 128%,2562}. As our method is compatible with
any neural field, we demonstrate that, being based on an
efficient backbone, it can reconstruct high-quality multi-
resolution images while maintaining the same number of
parameters as other techniques.

Ground Truth BANF INGP

Scene iNGP-64 BANF-64 iNGP-128 BANF-128
Chair 26.27 30.25 28.89 32.21
Drums 21.85 24.33 23.98 24.86
Ficus 24.06 27.87 27.59 27.45
Hotdog 28.33 30.48 31.52 32.77
Lego 23.64 26.59 27.22 28.12
Material 23.35 24.89 26.30 26.48
Mic 24.32 26.77 27.73 30.36
Ship 22.66 24.30 24.17 24.52
Average 24.31 26.93 27.17 28.34

Figure 1. Color decomposition — We show an application of our
method in frequency decomposition of the color field in NeRFs.

Method | BACON PNF  BANF
PSNR 29.266 29470  30.455
# Parameters | | 0.268M  0.276M  0.244M

Table 1. Image fitting — quantitative results on DIV2K [1].

Resolution | 64 128 256
Bilinear 25.650 25.364 30.455
Bicubic 26.559 26.380 30.697
Lanczos 26.050 26.415 30.210

Table 2. PSNR reported on interpolation with higher order kernels.

3. Higher order kernels

In our main results we used linear interpolation in our filter-
ing algorithm. However, it was noted that this interpolation
exhibits leakage, attributed to the sinc? Fourier transform
of the filter. We further investigate how higher-order inter-
polation kernels such as Lanczos and Bicubic can further
improve the filtering quality. In Figure 3, we evaluate re-
sults on the DIV2K [1] dataset, with images downsampled
to 2562. We then evaluate both quantitatively and qualita-
tively at resolutions {642, 1282, 256%}. We show in Table 2
that higher-order interpolations can help give an extra boost
the performance of our method, while producing (perceptu-
ally) better filtered images Fig. 3.
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Figure 2. Image Filtering — Comparison of 2D filtering results on DIV2K [1] to BACON [7] and PNF [5]. Quantitative results are
provided in Table 1.
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Figure 3. Higher Order Kernels — We evaluate the effect of higher order interpolation kernels on DIV2K [1].



4. Ablations

We validate our design choices in terms of Chamfer Dis-
tance (CD |) evaluated on the NeRF Synthetic dataset [2]
averaged over all objects, and at 1/8x scale.

Color MLP decomposition. When we train the color
MLP output in a cascaded manner , performance drops
CD=8.19—9.16. We attribute this to the color MLP rely-
ing on the SDF MLP output. As color and geometry exhibit
different frequencies in terms of their signal, (e.g., a highly
complex shape with solid coloring), this reliance would be
detrimental. For this ablation study we evaluate at 1/4x
scale, as the difference is less marked at 1/8x scale.

Color MLP Input. Removing the hash features input
to the color MLP results in a performance drop from
CD=11.4—13.6. Without the hash feature input, the color
MLP relies only on the SDF features. At low scales, the
SDF features will contain mostly low frequency content.
We hypothesize that relying only on band-limited features
reduces color reconstruction accuracy, resulting in inaccu-
rate optimization of the the neural fields.

Resolution warmup. When we remove the resolution
warmup from the coarsest level field, the performance
drops CD=11.4—11.9. This is because starting optimiza-
tion with lower resolution encourages smooth structures
early on, leading to an easier optimization landscape as also
shown in [4, 9].

5. Additional 3D reconstruction results

ModelNet10 data. We extend our evaluation of 3D shape
fitting to include five models from the ModelNet10-tables
dataset, assessed using the Chamfer-L2 metric (] -1072).
Specifically, we examined 3D objects with the following
identifiers: Table403, Table435, Table463, Table468, and
Table479. Notably, our method demonstrates the capabil-
ity to reconstruct thin structures even in low resolution, a
feature not exhibited by the iNGP baseline:

BANF iNGP
32 64 128 32 64 128
238 208 031 | 1862 231 0.44

Ours@32 GT iINGP@32

Additional Baselines for 3D Shape Fitting. In our com-
parative analysis, we include BACON [7] for 3D shape
reconstruction. However, we observed that BACON ex-
hibits slower training times and yields lower-quality results,

particularly at higher decimation rates, in comparison to
BANF. This observation is supported by the Chamfer-L2
metric (] -1072) evaluated on the four objects from the
Stanford dataset used in BACON. Notably, for this series
of experiments, we utilized the BACON codebase for data
processing and point sampling pipelines.

BANF iNGP BACON
32 64 128 32 64 128 32 64 128
135 0.82 0.54 ‘ 1.98 091 0.61 ‘ 2.65 1.00 0.58

Qualitative results for MobileBrick dataset. we also pro-
vide a qualitative comparison using the MobileBrick dataset
[6]. Notably, our method demonstrates superior perfor-
mance, particularly in handling low-resolution data and thin
structures, when compared to NeUS.
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6. Evaluation of geometry and color recon-
struction on NeRF Synthetic Dataset

In the NeRF Synthetic Dataset [8], not all aspects of the ge-
ometries are observable from the training/validation cam-
eras. This includes:

1) Internal structures that evade capture by any means,
such as the stem of the plant inside the pot in the "Ficus"
scene.

2) Some parts of the geometry that remain invisible from
all cameras (both during training and testing). For example,
the bottom of the chair in the "Chair" scene.

This inherent limitation results in a skewed assessment
of metrics designed to measure the quality of reconstruc-
tion. To address this issue when computing the Chamfer
Distance, we modify the process for densely sampled points
on the surface of a mesh. Specifically, we filter the point
cloud so that only points visible from at least one camera
are retained. This filtering procedure is applied to both the
ground truth and predicted meshes, ensuring a more accu-
rate evaluation.

In inverse rendering, it is expected that the image re-
construction quality degrades as more emphasis is put on



(filtered) meshes, since regardless of mesh quality, neural
fields can cheat to make renderings look good. Still, this
degradation is minimal (<1 dB): average test PSNR for
NeusS is 29.31 and 28.45 for BANF.
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