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Figure 1. Prototype. Top: The fabricated mask is placed at the
aperture plane of an event camera with a 50mm focal length lens.
Bottom: Sample captured event frames for a point source.

S1. Hardware Prototype
We performed a real-world experiment for tracking a point
light source at meter scale using a binary amplitude mask
and a Prophessee EVK3 event camera. Specifically, we
fabricated the NAM mask at 20mm diameter scale on a
Creality Ender 3 S1 Pro using 1.75mm PLA filament (see
Figure 1). Then, we captured an event dataset by mov-
ing a point source at discrete depth planes ranging between
75cm and 125cm with and without our coded aperture. For
all measurements, the camera was focused at 100cm. We
binned events in 1ms intervals to achieve an effective frame
rate of 1000 FPS and trained a CNN to estimate the event
frame’s depth. Results in Figure 2 demonstrate improved
tracking performance compared to an open aperture, partic-
ularly at depths where the point source is defocused.

S2. Accumulation Time
Cutting-edge event cameras offer 10kHz fresh rates; even
with 16-frame accumulation, the camera effectively oper-
ates at 625FPS — much faster than conventional CMOS
sensors. We also retrained our CNN-based tracking algo-
rithm on ‘pure’ event frames with no accumulation. Overall
performance degraded: NPM by +45% RMSE and NAM
by +54% RMSE. Alternative architectures such as Spiking
Neural Networks designed for sparse binary measurements
may be better suited for processing ‘pure’ events.

Figure 2. Real-world 3D tracking. Comparison between NAM
and Open apertures for depth estimation at 1000FPS. Error bars
show the 90% interquartile range.

S3. The Effects of Particle Speed
We have shown CRB depends on particle speed; a nat-
ural question is does the optimal design change with re-
spect to speed. We optimize our neural phase mask us-
ing the CRB objective function with fixed particle speeds—
{50, 100, 500, 1000}nm per time step. Our learned designs
are shown in Figure 3. When a particle moves quickly rela-
tive to the binned interval, the optimal design resembles the
Fisher phase pattern found for traditional CMOS sensors.

One can explain this collapse to the original Fisher mask
design as follows. As a particle moves faster, the captured
binned event frame looks more similar to the composition
of a negative PSF at the start location and a positive PSF at
the end location (Figure 4). This suggests that single-point
event tracking mirrors two-point CMOS tracking.

S4. Log-Intensity Difference Approximation
In this section, we prove the log-intensity difference ap-
proximation we consider when deriving the Cramér Rao
Bound is proportional to binned event frames.

Assume an idealized event camera model, where an
event is triggered as soon as the log-intensity change be-
tween the reference and the current intensity equals some
threshold, T . Consider producing a binned event frame
for a time interval [tstart, tend]. For a single pixel, let
the sequence of events over this interval occur at times
t1, t2, . . . tn and have polarities p1, p2, . . . , pn 2 {�1, 1}.
Let f(t) be the log-intensity at time t for the same pixel and
be continuous over the interval.

Lemma S4.1. The log-intensity difference, f(tend) �
f(tstart), is proportional to the binned event pixel value,



Figure 3. Designed Phase Masks and corresponding PSFs for
specific speeds. Each row visualizes the neural phase mask de-
signed for tracking particles moving at N nanometers per time
interval. Observe that the optimal design for ‘fast’ moving parti-
cles is the Fisher design.
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Proof. By assumption, the magnitude of the change corre-
sponding to each event is T . Notice that T pi is the log-
intensity difference between the previous event time (the
reference) and the current event time.
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The right-hand side is a telescoping sum,
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f(ti)� f(ti�1) = f(tn)� f(t0). (26)

t0 = tstart because the first event must occur t1� t0 after the
start of the interval. Then, the binned event frame is
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Finally, |f(tn) � f(tend)| = |�| < T because if the quan-
tity exceeded the threshold, an additional event would be
triggered. Substitute tend for tn.
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Thus, a binned event frame can be approximated as log-
intensity difference divided by T with error |✏| < 1.

As an event camera becomes more sensitive to change
(T decreases), the approximation’s percent error decreases
because the magnitude of the binned event frame increases
but the total absolute error is fixed at most 1.



Figure 4. Event camera measurements of a moving particle with the Fisher mask. Motion is simulated over a fixed time interval with
100 event samples. Observe a ‘fast’ moving particle produces an event frame with two copies of a regular PSF: a negative copy at the start
location, and a positive copy at the end location. Row 1: negative event count over the time interval. Row 2: positive event count over the
time interval. Row 3: the red channel visualizes negative events and the blue channel visualizes positive events. The pink regions represent
where the events cancel in a binned measurement. Row 4: binned event frame pos� neg. Row 5: log-intensity difference �L.
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