038

039

LQMFormer: Language-aware Query Mask Transformer for Referring Image Segmentation

Supplementary Material

(2)

1. Gaussian Enhanced Multi-Modal Fusion Module (GMMF)

003The application of the discrete Fast Fourier Transform (FFT)004within the GMMF module is central to transforming the005vision-language features F'_{vl} into the frequency domain, for006efficient global modelling. The FFT is defined as:

$$F_{\text{FFT}}(F'_{vl}) = \mathcal{F}(F'_{vl}) \tag{1}$$

008 where \mathcal{F} denotes the Fourier transform operation, and 009 F'_{vl} are the vision-language features that are obtained from 010 vision backbone model.

Amplitude and Phase Components in FourierTransform

013The complex exponential in $\mathcal{F}(F'_{vl})$ contains the phase in-014formation. The amplitude $\mathcal{A}(F'_{vl})$ and phase $\mathcal{P}(F'_{vl})$ compo-015nents, critical for reconstructing and manipulating the vision-016language features in the frequency domain, are derived from017 $\mathcal{F}(F'_{vl})$ and defined as follows:

018
$$\mathcal{A}(F_{vl}^{'}) = \sqrt{\mathcal{R}(F_{vl}^{'})^{2} + \mathcal{I}(F_{vl}^{'})^{2}},$$

028

007

$$\mathcal{P}(F_{vl}^{'}) = \arctan\left[\frac{\mathcal{I}(F_{vl}^{'})}{\mathcal{R}(F_{vl}^{'})}\right],\tag{3}$$

where $\mathcal{R}(F'_{vl})$ and $\mathcal{I}(F'_{vl})$ represent the real and imaginary components of $\mathcal{F}(F'_{vl})$, respectively.

023 Amplitude Modulation

024In the GMMF module, the amplitude component $\mathcal{A}(F_{vl}^{'})$ 025is modulated to enhance global visual-language features,026specifically using Gaussian smoothed filters for low-pass027filtering [1, 3]:

$$\mathcal{A}'(F_{vl}^{'}) = \mathcal{A}(F_{vl}^{'}) * \phi(F_{vl}^{'},\beta), \tag{4}$$

029 where * represents the operation of low-pass filtering, and 030 the result $\mathcal{A}'(F'_{vl})$ is the low-pass filtered version of the am-031 plitude component and β is learnable bandwidth parameter, 032 calculated from F_{vl} followed by sequence of Linear and 033 Pooling operation.

Now, for reconstructing the complex frequency represen-tation from the amplitude and phase, the following equationis used:

$$\mathcal{F}'(F_{vl}^{'}) = \mathcal{A}'(F_{vl}^{'}) * e^{j\mathcal{P}(F_{vl}^{'})},$$
(5)

where $e^{j\mathcal{P}(F_{vl}^{'})}$ represents the complex exponential with the phase component $\mathcal{P}(F_{vl}^{'})$.

To reconstruct the enhanced features for further processing, following [3], we apply the inverse discrete Fast Fourier transform (Inverse FFT): 042

$$F_{vl} = F_{\text{FFT}}^{-1}(\text{Conv}(\mathcal{F}'(F_{vl}^{'}))) + F_{vl}^{'}, \qquad (6) \qquad \mathbf{043}$$

where $F_{\rm FFT}^{-1}$ denotes the inverse Fourier transform operation, and Conv indicates 1x1 convolution. The final step in the GMMF module involves the combination of the original features F'_{vl} and the Gaussian-enhanced features, here represented by F_{vl} , resulting from the convolution and inverse FFT of the modulated complex frequency representation $\mathcal{F}'(F'_{vl})$.

This reconstruction is critical in the GMMF module, par-051 ticularly for modulating the amplitude component while 052 preserving the phase information, leading to enhanced visual-053 language feature representation. This detailed section supple-054 ments method section by offering a more detailed explana-055 tion of the operations within the GMMF module, particularly 056 focusing on the Fourier transform applications and the ratio-057 nale behind the use of Gaussian smoothing in the frequency 058 domain for feature enhancement. 059

2. Qualitative Results

The qualitative analysis shows the LQMFormer capabilities in segmenting objects from complex visual scenes based on intricate language descriptions. Each row in Figure 1 reflects a different scenario where the model proficiency in vision grounding and language understanding is evaluated.

Contextual Differentiation: The first row illustrates the model's ability to distinguish between individuals based on their roles and attire – a critical skill in scenes with multiple similar subjects. Notably, it segments the batter in white and the referee in black, showing understanding of context based description.

Detailed Descriptive Segmentation: The second row presents a case where LQMFormer precisely segments a batter based on both a descriptive action ("with one knee on the ground") and a specific object relation ("a bat on the ground in front of him"). This shows the model's capacity to interpret complex activities and relative positioning.

Disambiguation of Multiple Entities:In the third row,078LQMFormer adeptly segments both a man and a woman079wearing purple, accurately understanding multiple entities080

060

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

Query: "a batter wearing uniform with number 15 with one knee on the ground and a bat on the ground in front of him"

Query: " Man and woman in purple"

Query: " little boy with pink hat and crouching dude foreground"

Failure Case :

Query: " shirt with flames on it and pink sweater"

Figure 1. Qualitave Comparison of our model LQMFormer with ReLA [2] on GRES dataset.

based on their clothes color, which is a common challenge 081 082 in crowded scenes.

Understanding of Complex Indirect Descriptions: The 083 fourth row demonstrates LQMFormer's ability to under-084 stand indirect descriptors like "crouching dude" in the fore-085 ground, effectively linking the alias to the complex descrip-086 tion in the scene. 087

Challenging Case of Recognition of Occluded Objects: 088 089 Conversely, the fifth row presents a challenging scenario for LQMFormer. The model encounters difficulty accu-090 091 rately segmenting an occluded person characterized solely by a color descriptor ("pink sweater"). This case shows 092 the model's current limitations in distinguishing occluded 093 objects, especially when they blend into the background, 094 095 indicating a potential direction for future enhancements.

096 These qualitative evaluations shows that LQMFormer is proficient in scenarios that require detailed language under-097 standing and vision grounding. The model understands a 098 099 range of expressions, from straightforward references to a single entity to complex descriptions involving multiple ob-100 101 jects. Its performance passes compared to previous methods in RIS, highlighting its capability in this complex task. 102

References 103

- 104 [1] Chongyi Li, Chun-Le Guo, Man Zhou, Zhexin Liang, Shangchen Zhou, Ruicheng Feng, and Chen Change Loy. Em-105 bedding fourier for ultra-high-definition low-light image en-106 hancement. arXiv preprint arXiv:2302.11831, 2023. 1 107
- 108 [2] Chang Liu, Henghui Ding, and Xudong Jiang. Gres: Gener-109 alized referring expression segmentation. In Proceedings of 110 the IEEE/CVF Conference on Computer Vision and Pattern 111 Recognition, pages 23592-23601, 2023. 2
- 112 [3] Bo Miao, Mohammed Bennamoun, Yongsheng Gao, and Ajmal Mian. Spectrum-guided multi-granularity referring video 113 114 object segmentation. In Proceedings of the IEEE/CVF Interna-115 tional Conference on Computer Vision, pages 920-930, 2023. 116 1