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1. Further Discussion on CBMs

We discuss the geometric implications of the 3 chal-
lenges presented in this paper. As shown in Fig.1, by utiliz-
ing 2 sets of concepts, Black and Furry, we can categorize
4 classes of objects: polar bear (usually white and furry),
brown bear (usually black and furry), computer (usually
black and not furry) and air conditioner (usually white and
not furry).

Internet

Black

Furry

Helarctos

polar bear

brown bear

computerair conditioner

TV

Black Animal with Fur

Figure 1. Further discussion on CBMs about 3 challenges.

• Purity: When concepts become overly complex and
specific, their concept utilization efficiency is greatly
reduced. For instance, the compound concept Black
Animal with Fur can be entirely composed of the atomic
concepts Black and Furry, without the need for introduc-
ing a new concept. In other words, the introduction of the
new concept does not enrich the dimension of concept
space, which remains the dimension of 2.

• Precision: When concepts are too difficult for the model
to comprehend, the model may struggle to accurately
determine the direction of concept vectors. For example,
in the Fig.1, the 2 gray dashed lines represent a scenario
where the model may be uncertain about the correct
direction of the base vector of the concept Helarctos.
This uncertainty can lead to variations in the length of
the projection, resulting in a misunderstanding of the
concept and leading to incorrect classification.

• Completeness: For the new category TV (also black and
not furry), the existing concepts are unable to correctly
differentiate between TV and computer. In such cases,
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Figure 2. Accuracy and CUE of CBMs on CIFAR-10.

it becomes necessary to introduce new concepts, such
as Internet (computer has Internet, but TV does not), in
order to increase the dimension of concept space and
achieve correct classification.

Our proposed method addresses the challenges of purity
and precision by selecting atomic and generic concepts. Ad-
ditionally, we tackle the challenge of completeness by em-
ploying the incremental concept discovery module to dis-
cover new concepts.

2. Concept Number and Performance
The concept utilization efficiency (CUE) is determined

by both the length of each concept and the number of con-
cepts. It reflects the challenges of purity and precision, as
overly specific concepts may require a larger quantity of
concepts, while complex compound concepts tend to have
longer lengths per concept word. Completeness can be re-
flected by accuracy, where the results of CBMs closer to the
performance of CLIP Linear Probing indicate that the con-
cepts used are more complete. We visualize the accuracy
and CUE of our method in Fig.2 and Fig.3 to highlight that
our method better addresses the above 3 challenges.

A higher CUE and accuracy indicate better performance
of the CBMs, which is represented by points in the upper-
right corner of the figures.

3. Method Details
Concept Vector Initialization. The distribution of con-

cept embeddings exhibits certain patterns. By using mean
concept embedding as the initialization, we can introduce
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Figure 3. Accuracy and CUE of CBMs on CIFAR-100.

prior knowledge about the distribution of concept embed-
dings to the discovered concept vector, which accelerates
the convergence process. Additionally, the reason for us-
ing the base concept bank is to avoid the discovered con-
cept vector becoming too similar to some concept vector in
the candidate concept bank so that a shortcut can be found
to rapidly converge to a particular local optimum concept.
The noise is also provided to increase randomness in the
process.

Concept Similarity Loss. The concept similarity loss
function guarantees that the discovered concept vector is
similar to the concept embedding in the candidate concept
bank. However, we find that although this approach restricts
the meaning of the discovered concept vector, it can still be
prone to converge to a particular concept and no longer ex-
hibit any changes, leading to being trapped in a local opti-
mum. Therefore, we choose to use the first M concepts for
similarity constraint, and the resulting loss function adopts
the average of these M concept similarity losses, thus con-
verting the vector into a scalar value. It is noteworthy that
which specific concept among these M concepts the model
converges to will be determined by the optimization of the
cross-entropy loss function.

Concept Utilization Efficiency. In addition to the quan-
tity of concepts, we also pay attention to the average num-
ber of letters, based on the following empirical observa-
tion: compound concepts and high-level concepts tend to
have a greater number of letters. Our intention is to obtain
pure atomic concepts rather than complex compound con-
cepts. Without considering the number of letters, a com-
pound concept like green leaf would be encouraged due to
its quantity being 1, rather than obtaining the separate con-
cepts of green and leaf that we desire. Moreover, we expect
to obtain concepts that can be precisely understood by CLIP,
rather than complex concepts, which also enhances human
interpretability. Frequently used words often have shorter

Table 1. The results when using word number.

Methods CIFAR-10 CIFAR-100
PCBM-1r 3.4823 0.9470
PCBM-2r 1.6682 0.3555
PCBM-3r 0.7758 N/A
Lf-CBM 2.6535 0.2860
LaBo-10c 1.9076 0.1183
LaBo-20c 0.9292 0.0600
LaBo-30c 0.6142 N/A
Res-CBM 3.5072 1.6645

Table 2. Base concept bank sizes and residual concept vector num-
bers of different datasets.

Dataset Base Size Residual Number
CIFAR-10 237 10

CIFAR-100 372 15
Tiny-ImageNet 634 30

CUB-200 177 30
Flower-102 186 20
Food-101 221 20
LAD-A 229 30
LAD-E 204 30
LAD-F 197 30
LAD-H 162 30
LAD-V 242 30

lengths, such as dog, whereas less commonly used words,
such as canidae, tend to have longer lengths. And when us-
ing word numbers, our results are more efficient, as shown
in Tab.1.

4. Experiment Details

To better replicate the results of our paper, we provide
experimental details as follows. We used the Adam opti-
mizer for all experiments. For the full data experiments, the
batch size was set to 256. For the few shot tasks, the batch
size was set to the number of classes.

For CLIP-based CBMs, the initial learning rate was set
to 0.01, and it was decreased by a factor of 0.6 every 10
epochs. For Res-CBM and PCBM-h, another optimizer was
used with an initial learning rate of 0.01, which was de-
creased by 0.6 every 10 epochs.

For the original independent CBMs, the initial learning
rate of the concept extractor was set to 0.01, and it was de-
creased by a factor of 0.8 every 5 epochs. The initial learn-
ing rate of the concept classifier was set to 0.1 and decreased
by a factor of 0.8 every 5 epochs.

For the incremental concept discovery module, the ini-
tial learning rate of the original concept classifier was set
to 0.001, and it was decreased by a factor of 0.5 every 3
epochs. The initial learning rate of the residual concept
classifier was set to 0.01, and it was decreased by a factor



of 0.5 every 3 epochs.
The number of candidate concepts was set to 5, and the

weight of the concept similarity loss function was set to
0.1. The number of residual vectors varied depending on
the dataset, the specific numbers are presented in Tab.2.
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