Control4D: Efficient 4D Portrait Editing with Text

Supplementary Material

1. Implementation Details
1.1. GaussianPlanes

Spatial triplane decomposition. In 3D spatial space, we
decompose the attributes of each point in the canonical
Gaussian point cloud, including color, opacity, latent fea-
ture, and rotation. The decomposition of each attribute
utilizes three corresponding feature planes. We employ a
HashGrid [5] to represent each feature surface, with a hi-
erarchy of resolutions at 16 levels, where the scale of each
level is 1.3 times that of the preceding level. Each level con-
tains 2 feature channels, and the encoded results are mapped
to the corresponding attributes through a 256-unit MLP net-
work.

4D flow decomposition. For the 4D flow, we have imple-
mented a hierarchical decomposition using Tensor4D [9].
In our approach, we decompose the flow of each point’s
position and rotation at each moment within the Gaussian
point cloud. This decomposition employs 9 feature planes.
Each feature plane is represented using a HashGrid consis-
tent with the spatial feature planes. Subsequently, the en-
coded results are first fused individually for the correspond-
ing three planes using three 256-unit MLPs, and then a final
attribute output is produced through another 256-unit MLP.

1.2. 4D Generator

Network Structure. We adopt a network architecture simi-
lar to pix2pixHD [10] for the GAN’s generator and discrim-
inator. In our generator, we introduce some modifications:
the input features comprise both RGB and latent features,
which are concatenated together as the input. Addition-
ally, in the intermediate layers, we concatenate the feature
with its global feature code. The architecture includes three
downsample layers, three middle blocks, and five upsample
layers, thereby achieving a 4x super-resolution in the final
output. The number of the base feature channel in the net-
work is 32. The input for the 4D generator is at a resolution
of 256, and it outputs images at a resolution of 1024. As
for the discriminator, we utilize the same architecture as the
pix2pixHD discriminator.

Global Encoder. We utilize MobileNet [2] to extract the
global code. Initially, the image is resized to a resolution
of 224, followed by feature extraction through MobileNet’s
layers. We maps the final feature of MobileNet to a 64-
dimensional global feature code.

Local Encoder. We employ an encoder similar to the VAE
encoder used in Stable Diffusion [6] as our local encoder.
Our local encoder compresses the original image to a quar-
ter of its original size through two downsample layers, and

the number of ”z_channels” is set to 4. The base channel
number of our network is 32.

1.3. Diffusion-based Editor

‘We utilize ControlNet [11] as our diffusion-based editor. To
achieve better control effects, we employ both normal and
OpenPose as control signals. The control strength for nor-
mal is set at 0.5, while for OpenPose, it is 1.0. Additionally,
we use the RealisticVision [8], an SD1.5 model, to obtain
more realistic editing effects. Additionally, before feeding
the images into ControlNet, we resize the 1024-resolution
images down to a resolution of 512.

1.4. 4D Reconstruction based on GaussianPlanes

We initially reconstruct the 4D scenes using Gaussian-
Planes. Our experiments primarily focus on the Tensor4D
dataset, and we also showcase some results in challeng-
ing scenes, including those from Neural3DVideo [3], EN-
eRF [4] and InstructNeRF2NeRF [1]. For the Tensor4D
dataset, we employ a Gaussian sphere for initialization, with
a point cloud size of 5,000 and a radius of 1. For the EN-
eRF, Neural3DVideo and InstructNeRF2NeRF datasets, we
utilize the point cloud from the first frame of COLMAP [7]
as the initialization.

During the training process, to ensure the stability of the
canonical Gaussian point cloud, we adopt a weighted strat-
egy for selecting training frames. There is a 50% probabil-
ity that we choose all frames from the first moment and a
50% probability that we randomly select frames from other
moments. This approach is designed to balance the repre-
sentation of the initial frame with the dynamic aspects of
the remaining video content. Simultaneously, we are also
training the 4D generator in preparation for 4D editing.

During the training process, the learning rate for the
point cloud positions linearly decays from 0.00016 to
0.0000016. The learning rates for scaling, color, opacity,
and rotation are set at 0.005, while the learning rate for flow
is 0.00025. The learning rate for the 4D generator is 0.001.
The gradient threshold for splitting is set to 0.0002, and the
interval of densification and pruning is 200. We employ
L1 loss to train GaussianPlanes, with a weight of 1.0. For
training the generator, we use L1 loss, perceptual loss, and
GAN loss, with weights of 1.0, 1.0, and 0.01, respectively.
The discriminator is trained using GAN loss and gradient
penalty regularization, with respective weights of 1.0 and
0.01.



Figure 1. Ablation study of 4D generator. First row: Results utilizing only GaussianPlanes, second row: Results achieved by combining
4D generator. The prompts used here are Elf King” and “Doctor Strange”.

Figure 2. Control4D results on ENeRF dataset. The prompts are Iron Man” and ~’Lionel Messi”.

1.5. 4D Editing Process

During the 4D editing process, we utilize two GPUs
(RTX3090) for training. One GPU is dedicated to run-
ning edits for each image, while the other GPU is tasked
with running GaussianPlanes and rendering images with the
4D generator. These two processes are executed in paral-
lel. For complex multi-camera 4D scenes, including Neu-
ral3DVideo and ENeRF, we do not edit using all cameras.
Instead, we use images from all cameras at the first moment

and randomly select images from four cameras at other mo-
ments to form the dataset.

The first 1000 steps of our training are for static edit-
ing, followed by 4000 steps for dynamic editing. During
static editing, the noise added to the diffusion-based editor
is U(0.02,0.98), which is reduced to U(0.02,0.6) for dy-
namic editing. The steps of diffusion model is set to 20 and
we use the DDIM scheduler. To enhance robustness, we
lower the learning rates during the editing process. Specifi-



Figure 3. Ablation Study of GaussianPlanes. First row: w/o spatial triplane decomposition. Second row: w/o 4D flow decomposition.
Third row: Control4D results.

cally, the learning rate for point positions is 0.000016, while
the learning rates for scaling, color, opacity, and rotation re-
main at 0.005, and the learning rate for flow is 0.0001. The
4D generator’s learning rate is set at 0.0001. In the edit-
ing process, we don’t split or prune Gaussian points. In the
multi-level guidance, the probability of selecting each level
is equal. The weights of the various losses in 4D editing
remain consistent with those in the reconstruction process.

2. More Comparisons

We conducted further comparisons with Instruct-
NeRF2NeRF on their dataset. ~As shown in Fig. 9,
our method noticeably surpasses InstructNeRF2NeRF in
terms of realism and quality. Additionally, our optimization
process is extremely fast, completing editing tasks in just
5 minutes, whereas InstructNeRF2NeRF requires at least
about 5 hours. This makes our method 60 times more

efficient than InstructNeRF2NeRF.

3. More Ablation Study

GaussianPlanes. We conducted more ablation studies on
GaussianPlanes. As shown in Fig. 3, when the spatial tri-
plane decomposition is not used, the results exhibit sig-
nificant noise. Without the decomposition of flow, the
edited results become noticeably blurred, with evident oc-
currences of jittering, which can be clearly observed in
the supplementary video. This demonstrates that our pro-
posed plane decomposition method makes Gaussian Splat-
ting more structured and significantly enhances its robust-
ness.

4D generator. More ablation experiments were conducted
on our proposed 4D generator. As illustrated in Fig. 1, with-
out the use of the generator and relying solely on Gaussian-
Planes, the images noticeably lose many high-quality de-



Figure 4. More Control4D results on Tensor4D dataset. The prompts are “Joe Biden wearing suit”, ”Donald Trump wearing suit”, ”Trinity
in The Matrix”, ”Neo in The Matrix”, ’James Gordon in Batman”, and “’Joker in Batman”.
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Figure 5. Experiment on facial expression. Text prompt is A
black woman”.

tails and appear blurry. This validates the role of our 4D
generator in enhancing quality.

4. More Results

Our method is applicable not only to the editing of half-
body and heads but also to complex 4D scenes and full-
body human editing. More results are illustrated in Fig. ??,
4, 7, and 2. Our method could also be applied to general
dynamic scenes and control human facial expressions by
landmark ControlNet as shown in Fig. 5 and 6. Please refer
to our supplementary video for dynamic editing effects.

Control4D results

2 of 24 views

Figure 6. Experiment on 360-degree human avatar scene. Text
prompt is ”Tim Cook”.

5. Social Impact

The primary goal of our method is to provide users with an
advanced tool for dynamic human editing in complex 4D
scenes. While our approach enables intricate editing of full-
body humans and facilitates creative expression in digital
environments, it also raises concerns about potential mis-
use, such as creating deceptive or misleading content. This



Figure 7. Experiment on general dynamic 360-degree cases. The
text prompt is "A sushi excavator”.

challenge is not exclusive to our method but is a common
issue across various generative modeling techniques. Ad-
ditionally, in line with ethical considerations, our approach
underscores the importance of diversity, including aspects
of gender, race, and cultural representation. It is crucial
for ongoing and future research in generative modeling to
continuously engage with and reevaluate these ethical con-
siderations to ensure responsible use and positive societal
impact.



Figure 8. Control4D result on neural 3D video dataset. The prompt is "Mark Zuckerberg”.

Figure 9. Comparison with InstructNeRF2NeRF on InstructNeRF2NeRF dataset. First row: InstructNeRF2NeRF results with prompts
”Turn him into Albert Einstein” and Turn him into Elon Musk”. Second row: Control4D results with prompts ”Albert Einstein” and
”Elon Musk”.
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