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7. Related Work

7.1. Foundation Models

Currently, extensive research is being conducted on foun-
dation models. In this context, we would like to present
three models used in our paper: CLIP [35], CLIPN [40],
and DALL-E [36].

CLIP (Contrastive Language-Image Pretraining) stands
as a formidable vision and language model developed by
OpenAI, representing a groundbreaking achievement in the
field of artificial intelligence. Its strength lies in its seamless
integration of both vision and language understanding, lead-
ing to outstanding performance across a wide range of tasks.
The architecture of CLIP is built upon two central compo-
nents: an image encoder and a text encoder. The image en-
coder meticulously processes input images, extracting high-
level visual features that captures vital information about
the image’s content and style. Similarly, the text encoder
takes on the responsibility of encoding natural language
descriptions or prompts into a latent space representation.
This encoding process is carefully designed to capture the
semantic meaning and nuanced context embedded within
the text. At the heart of CLIP’s innovation lies the align-
ment of image and textual representations within a shared
embedding space. This alignment is achieved through a
contrastive learning framework, where the model is trained
to maximize the similarity between corresponding image-
text pairs while simultaneously minimizing the similarity
between unrelated pairs. By training on extensive datasets
containing diverse images and their associated textual de-
scriptions, CLIP exhibits the capability to grasp a broad
spectrum of concepts and relationships across different data
modalities. Once trained, the CLIP model demonstrates its
versatility by excelling in various tasks, including zero-shot
image classification, caption generation, and image-to-text
retrieval—all driven by the alignment of image and text em-
beddings. In essence, the CLIP model seamlessly harmo-
nizes image and text encoders to create a unified representa-
tion space that enables comprehensive vision and language
understanding. This exceptional capability not only under-
scores its impressive performance across multiple tasks but
also positions it as a transformative tool for bridging the gap
between visual and textual information.

CLIPN (CLIP Saying “No”) [40] is a derivative model
stemming from CLIP, mirrors its predecessor in terms of
structure and training approaches. Its distinctive feature,

however, lies in a specialized functionality. By modifying
the prompt template, CLIPN alters the dynamic between
image and text, offering insights into the likelihood that
a certain sample falls outside a specific class. Moreover,
CLIPN’s capacity to alter the dynamic between image and
text through prompt modifications has far-reaching impli-
cations. It allows users to gain insights into the likelihood
that a given sample falls outside a specific predefined class.
This is immensely valuable in scenarios where anomaly de-
tection or outlier identification is essential. CLIPN can pro-
vide valuable indications of when an image-text pair devi-
ates from the norm, aiding in tasks such as fraud detection,
quality control, or security monitoring.

DALL-E (Diverse All-scale and Latent Length Encoder)
represents a cutting-edge generative model developed by
OpenAI, symbolizing a significant milestone in the field
of artificial intelligence. This innovative model seamlessly
merges the domains of natural language comprehension and
image generation, enabling it to produce highly intricate im-
ages directly from textual descriptions. The architecture of
the DALL-E model can be deconstructed into two funda-
mental components: an encoder and a decoder. The encoder
assumes the role of skillfully processing natural language
descriptions, transforming them into latent vectors. Dur-
ing this process, it captures the intricate semantic nuances
embedded within the input text. This encoding process en-
tails converting textual input into a numerical representation
comprehensible to the model. To execute this task effec-
tively, the encoder frequently employs advanced techniques
such as transformers or recurrent neural networks, facilitat-
ing the extraction of meaningful and context-rich features
from the text. Conversely, the decoder component shoul-
ders the responsibility of utilizing these encoded latent vec-
tors to generate corresponding images that faithfully mirror
the essence of the input textual description. The decoder
harnesses the capabilities of influential generative models
like autoregressive models and transformers to decode the
latent vectors into visually coherent, diverse, and expres-
sive images. By adeptly conditioning the image genera-
tion process on the encoded textual context, DALL-E ex-
hibits the remarkable ability to generate images that seam-
lessly align with the provided textual descriptions. DALL-
E has not only demonstrated remarkable prowess but has
also emerged as a crucial bridge connecting the domains
of natural language processing and computer vision. This
bridge empowers users to effortlessly generate a wide spec-
trum of diverse and lifelike images solely based on textual
input. Consequently, DALL-E finds applications across a



multitude of domains, encompassing content creation, vir-
tual reality, creative design, and even in assisting artists and
designers in translating their abstract concepts into visual
reality. In summary, the DALL-E model can be likened to a
symphony, composed of an encoder and a decoder, orches-
trated to craft images from textual descriptions. It leverages
state-of-the-art techniques in language comprehension and
image synthesis to conjure visually coherent and diverse im-
ages that faithfully encapsulate the essence of the provided
text. DALL-E’s ability to transmute textual prompts into
stunning visual outputs holds immense potential across var-
ious creative and practical domains.

7.2. Contrastive Learning

Since its inception, contrastive learning has garnered sig-
nificant attention within the fields of machine learning and
computer vision [7–9, 22]. At its core, this approach cen-
ters on the concept of identifying compatible positive and
negative samples and calculating their loss functions. The
primary objective is to minimize the distance between an-
chor samples and their corresponding positives while simul-
taneously maximizing the distance between anchor sam-
ples and negatives. The selection of positive and negative
samples can be achieved through a variety of methods, of-
fering adaptability to suit specific requirements. For ex-
ample, one can opt for label-based selection [24], where
samples with identical labels are designated as positives,
while the remainder serve as negatives. Alternatively, pos-
itive samples can be generated through rotations and trans-
lations of anchor samples, with all other samples desig-
nated as negatives [7]. Researchers also have the flexibil-
ity to devise custom selection criteria tailored to the de-
mands of the task or, in some cases, forgo the use of neg-
ative samples entirely [18]. Contrastive learning strategies
have found applications across a broad spectrum of down-
stream tasks, spanning from image classification to object
detection and retrieval. Its versatility and adaptability ren-
der it a valuable tool in the realm of machine learning re-
search. Particularly noteworthy is contrastive learning’s
significant contributions to the field of few-shot learning
[13, 20, 28, 30, 42]. In our paper, we leverage the Direct-
and-Inverse concept, harnessing models such as CLIP and
CLIPN to precisely extract positive and negative samples.
This innovative approach has propelled few-shot learning to
new heights, addressing the challenges associated with lim-
ited data. In summary, contrastive learning has emerged as
a potent paradigm in machine learning and computer vision,
providing a flexible and effective methodology for sample
selection and loss calculation. Its impact extends across a
wide range of applications, with its remarkable contribu-
tions to few-shot learning standing out as a testament to its
significance in addressing complex and challenging prob-
lems in the field.

8. Experiments

8.1. Additional Performance Comparison

Fig. 7 presents a comprehensive analysis of the experimen-
tal outcomes for other five datasets, including EuroSAT
[23], FGVC [31], Flower102 [32], StanfordCars [26], and
UCF101 [39]. The results can be categorized into two
components: the upper part of the figure illustrates perfor-
mances under 1-shot conditions, with variations in noisy la-
bel proportions. Conversely, the lower part focuses on out-
comes where a consistent noisy label proportion of 0.3 is
maintained across various few-shot scenarios. These exper-
imental findings across datasets are in alignment with re-
sults from six other datasets, further solidifying the claim
that our method outperforms others in terms of both perfor-
mance and stability.

Furthermore, as depicted in Fig. 8, the learning progress
over 50 epochs is meticulously visualized. It captures both
the training loss and test accuracy within the context of the
1-shot ImageNet scenario. These graphical representations
vividly illustrate the rapid convergence of our method.

Additionally, in contrast to our previous experiments
where ResNet50 served as the backbone architecture for
CLIP, this study employs DeIL with a variety of visual en-
coders for comparisons with other methods. As depicted in
Table 5, DeIL consistently showcases superior performance
across different visual backbones. Particularly, when uti-
lizing the ViT-B/16 backbone, this phenomenon becomes
particularly pronounced. These observations underscore the
versatility and generalizability of our approach across vari-
ous network architectures.

8.2. Additional Ablation Study

DeIL-Pretrainer In the original text, Equation (4) intro-
duces a critical parameter denoted as ϵ, which plays a piv-
otal role in determining the performance of the initial step
of the DeIL-Pretrainer. To assess the impact of this param-
eter on the results, we conducted an ablation experiment. In
this experiment, we consider a scenario with 1,000 images
and their corresponding labels. Among these, 500 images
have correct labels, while the remaining 500 are associated
with incorrect labels. The objective is to examine how accu-
racy changes concerning whether a sample does not belong
to a specific class under different values of ϵ. It is impera-
tive to note that the setting of ϵ should be greater than 0.5
for the following reasons: Let’s assume the predicted value
is p representing the probability of a sample not belong-
ing to class A, while (1 − p) represents the probability of
a sample belonging to class A. When the predicted value p
falls below 0.5, it suggests that the likelihood of the sample
belonging to class A outweighs the likelihood of it not be-
longing to class A. Therefore, to achieve the purpose of the
original text, we set the threshold ϵ to a value greater than



Figure 7. Performance (%) comparison on other datasets. The upper column presents the results under 1-shot conditions with different
noisy label proportions, while the lower column presents the results with a fixed noisy label proportion of 0.3 on varying few-shot settings.

Figure 8. The learning curve of training loss and test accuracy (%) of our DeIL on 1-shot ImageNet. The noisy label proportion is fixed at
0.3.

0.5. The results of our experimentation are summarized in
Tab. 6. Upon careful examination, it becomes evident that
when ϵ is set to 0.5, optimal results are achieved.

Additionally, we present the predicted values obtained
through the inverse-concept method in Fig. 9. These values
represent the probability distribution of 1,000 samples not
belonging to 1,000 categories. The x-axis corresponds to
1, 000 × 1, 000 values, while the y-axis represents the pre-
dicted probability values. The figure illustrates the results
with one data point selected for every 200 points. It is note-
worthy that a significant majority of values tend to cluster
around either 0 or 1, indicating a high degree of confidence
in most predictions made by the method.

DeIL-Adapter We first discuss the losscls. In the orig-
inal text, Equations (15) and (16) highlight the significant

impact of the parameters α and β on the results. In this con-
text, we conduct experiments to assess the consequences of
varying these parameters, and the findings are summarized
in Tab. 7. Our primary objective through this extensive ex-
amination and fine-tuning of hyperparameters is to unravel
the intricate relationship between alpha, beta, and the result-
ing loss values. Ultimately, this endeavor aims to shed light
on how these parameters exert their influence on the over-
all outcomes of our computations. This meticulous analysis
yields valuable insights that can be instrumental in optimiz-
ing the performance and accuracy of our model. It is worth
noting that these experiments were conducted using the 1-
shot ImageNet with fixed values for the noisy label propor-
tion (0.3) and training epochs (40).

Then, let’s dive into a detailed discussion of lossnce. As
evident from Equation (25) in the original text, the param-



Figure 9. Probability distribution of 1000 samples not belonging to 1000 categories. The x-axis corresponds to 1000× 1000 values, while
the y-axis represents the predicted probability values. The figure illustrates the results with one data point sampled for every 200 points.

Methods Backbones

RN50 RN101 ViT-B/32 ViT-B/16

Linear-probe CLIP (ICML’21) [35] 13.98 16.18 16.87 19.69
CoOp (IJCV’22) [49] 56.58 55.23 53.57 61.54
Tip-Adapter-F (ECCV’22) [47] 59.97 62.62 62.90 66.91
CLIP-Adapter (IJCV’23) [17] 55.19 55.03 52.69 58.24
CALIP-FS (AAAI’23) [19] 56.86 61.29 61.89 66.59
CaFo (CVPR’23) [48] 59.99 62.03 63.12 67.03
APE-T (ICCV’23) [50] 51.02 54.34 57.92 60.63

DeIL (Ours) 62.28 63.09 65.62 70.90

Table 5. Ablation Study (%) of CLIP’s Visual Encoders. We conduct different visual backbones on the 1-shot ImageNet. The noisy label
proportion is fixed at 0.3.

Method ϵ

0.5 0.6 0.7 0.8 0.9

Noisy Label Identification 87.0 85.6 84.3 83.0 80.6

Table 6. Examining how accuracy (%) changes concerning
whether a sample does not belong to a specific class under differ-
ent values of ϵ on ImageNet. There are 1,000 images and their cor-
responding labels. Among these, 500 images have correct labels,
while the remaining 500 are associated with incorrect labels. The
reason for commencing from 0.5 is further elaborated in Sec. 8.2.

eter γ assumes a critical role in governing the behavior of
lossnce. To be more precise, the magnitude of γ dictates
the extent to which the model relies on label information in
the loss calculation. In light of this, we embark on an ex-
ploration of the impact of varying γ values through a series
of experiments. The comprehensive results of these experi-
ments are meticulously documented in Tab. 8.

α
β

0.1 0.3 0.5 0.7 0.9

0.1 61.52 61.70 62.00 61.97 62.14
0.3 61.91 62.65 62.75 62.55 62.28
0.5 61.61 62.11 62.15 62.19 62.51
0.7 61.69 62.45 62.38 62.35 62.56
0.9 61.76 62.58 62.50 62.53 62.40

Table 7. Comparison results (%) of different hyperparameter (α
and β) on ImageNet with 1-shot case. The noisy label proportion
is fixed at 0.3. The training epoch is fixed at 40.

DALL-E Next, we delve into the impact of the quantity
of enhanced images on the results, with corresponding out-
comes presented in Tab. 9. We observe that increasing the
number of generated samples tends to result in enhanced
performance. However, it’s crucial to note that an exces-
sive increase in the sample quantity can significantly pro-
long the training time. In the main text, we provide results
based on an 8-dalle-shot configuration, striking a balance



Figure 10. Efficiency of Direct-and-Inverse concept on DeIL-
Pretrainer. (a) represents the selection of positive and negative
samples based on the provided noisy labels. (b) indicates the se-
lection of positive samples based on the Direct concept and nega-
tive samples based on the provided noisy labels. (c) signifies the
selection of positive samples based on the provided noisy labels
and negative samples based on the Inverse concept. (d) encom-
passes the selection of positive and negative samples based on the
Direct-and-Inverse concept.

Method γ

100 10−1 10−2 10−3 0

DeIL 61.96 62.28 61.75 61.75 61.50

Table 8. Comparison results (%) of different hyperparameter (γ)
on ImageNet with 1-shot case. The noisy label proportion is fixed
at 0.3. The training epoch is fixed at 40.

between improved effectiveness and maintaining a manage-
able training duration. This equilibrium ensures a practical
and efficient approach to achieving desirable outcomes. Ad-
ditionally, we offer a visual representation of the generated
images in Fig. 11.

8.3. Efficiency of Direct-and-Inverse Concept

In the original text, we discussed the significance of the
Direct-and-Inverse Concept in the DeIL-pretrainer. Now,
we delve deeper into its role in the DeIL-Adapter. The ex-
perimental results are depicted in Fig. 10. Upon observa-
tion, it becomes evident that our method has a positive im-
pact, with its effectiveness becoming more pronounced as
the ratio of label noise increases.

8.4. Visualization of Direct-and-Inverse Templates

Lastly, we present visualizations of the inverse and direct
templates in Fig. 12.

DALL-E Shots Noisy Label

0.1 0.3 0.5 0.7 0.9

1 61.36 61.18 61.15 61.11 61.06
2 61.56 61.23 61.14 61.10 61.12
4 62.20 61.80 61.93 61.87 61.94
8 62.37 62.28 62.42 62.27 62.11

16 62.66 62.62 62.50 62.57 62.46

Table 9. Ablation Study (%) of generated number via DALL-E.
We compare different noisy label proportions on 1-shot ImageNet.



Figure 11. Visualizations of DALL-E’s generated images. Examples are from ImageNet.



Figure 12. Visualization of Direct-and-Inverse templates.
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