
A. Hyperparameter Settings

Table 7. G-VBSM hyperparameter settings on ImageNet-1k.

Phase Optimizer Learning
Rate

Optimizer
Momentum

Loss
Function

Batch
Size

Epoch/
Iteration Augmentation Others

Pre-trained model
training SGD 0.1 0.9 cross-entropy 256

Epoch
100 RandomResizedCrop -

Data synthesis Adam 0.1 β1,β2=0.5,0.9 ℓ(fcand(X̃), y) + L′
BN

+LDD + L′
Conv

40
Iteration

4000 RandomResizedCrop
βdr=0.4, Backbone=

{ResNet18,MobileNetV2
,EfficientNet-B0,ShuffleNetV2-0.5}

Soft label
generation - - - - 1024

Epoch
300

RandomResizedCrop,
CutMix

Backbone=
{ResNet18,MobileNetV2

,EfficientNet-B0,ShuffleNetV2-0.5}

Evaluation AdamW 0.001 β1,β2=0.9,0.999 MSE+0.1×GT 1024
Epoch

300
RandomResizedCrop,

CutMix

Evaluation Model=
{ResNet18,ResNet50,ResNet101,

MobileNetV2,Swin-Tiny,DeiT-Tiny}

Table 8. G-VBSM hyperparameter settings on Tiny-ImageNet.

Phase Optimizer Learning
Rate

Optimizer
Momentum

Loss
Function

Batch
Size

Epoch/
Iteration Augmentation Others

Pre-trained model
training SGD 0.1 0.9 cross-entropy 128

Epoch
50

RandomCrop
RandomHorizontalFlip -

Data synthesis Adam 0.05 β1,β2=0.5,0.9 ℓ(fcand(X̃), y) + L′
BN

+LDD + L′
Conv

50
Iteration

4000 RandomResizedCrop
βdr=0.4, Backbone=

{ResNet18,128-width ConvNet,MobileNetV2
,WRN-16-2,ShuffleNetV2-0.5}

Soft label
generation - - - - 128

Epoch
100

RandomResizedCrop,
CutMix

Backbone=
{ResNet18,128-width ConvNet,MobileNetV2

,WRN-16-2,ShuffleNetV2-0.5}

Evaluation SGD
0.2, 0.1 and 0.1 on

ResNet18, ResNet50 and ResNet101
, respectively

0.9 MSE+0.1×GT 128
Epoch

100
RandomResizedCrop,

CutMix
Evaluation Model=

{ResNet18,ResNet50,ResNet101}

Table 9. G-VBSM hyperparameter settings on CIFAR-10/100.

Phase Optimizer Learning
Rate

Optimizer
Momentum

Loss
Function

Batch
Size

Epoch/
Iteration Augmentation Others

Pre-trained model
training SGD 0.05 0.9 cross-entropy 64

Epoch
50 and 5 on

CIFAR-100 and CIFAR-10
, respectively

RandomCrop
RandomHorizontalFlip -

Data synthesis Adam 0.05 β1,β2=0.5,0.9 ℓ(fcand(X̃), y) + L′
BN

+LDD + L′
Conv

50
Iteration

4000 RandomResizedCrop
βdr=0.4, Backbone=

{ResNet18,128-width ConvNet,MobileNetV2
,WRN-16-2,ShuffleNetV2-0.5}

Soft label
generation - - - -

64 or |S|
(|S| ≤100)

Epoch
1000

RandomResizedCrop,
CutMix

Backbone=
{ResNet18,128-width ConvNet,MobileNetV2

,WRN-16-2,ShuffleNetV2-0.5}

Evaluation
SGD and AdamW on

CIFAR-100 and CIFAR-10
, respectively

0.1 and 0.001 on
CIFAR-100 and CIFAR-10

, respectively

0.9 and β1,β2=0.9,0.999 on
CIFAR-100 and CIFAR-10

, respectively
MSE+0.15×GT

64 or |S|
(|S| ≤100)

Epoch
1000

RandomResizedCrop,
CutMix

Evaluation Model=
{128-width ConvNet,ResNet18}

Here, we present the hyperparameter settings of G-VBSM in the pre-trained model training (i.e., Squeeze in SRe2L), the data
synthesis (i.e., Recover in SRe2L), the soft label generation (i.e., Relabel in SRe2L), and the evaluation phases in Tables 7
(ImageNet-1k), 8 (Tiny-ImageNet), and 9 (CIFAR-10/CIFAR-100). The hyperparameter settings for the ImageNet-1k and
Tiny-ImageNet datasets predominantly adhere to SRe2L [34]. Furthermore, the settings for CIFAR-10/CIFAR-100 draw
upon the classical knowledge distillation framework [6, 8, 27, 43]. Notably, we employ the same evaluation model (i.e. 128-
width ConvNet) and identical number of epochs (i.e. 1000) during the evaluation phase on CIFAR-10/CIFAR-100 as those
used in the prior dataset distillation approaches [1, 20], ensuring experimental fairness.

The Consistency of Backbone used in Data Synthesis and Soft Label Generation. In all experiments conducted on
different datasets, we maintain the same architectures and identical parameters of the pre-trained model for data synthesis
and soft label generation. Similar to SRe2L, our exploratory studies revealed that preserving the consistency of the backbone
results in the best generalization ability for the distilled dataset.

The Hyperparameter βdr. Given G-VBSM’s computational efficiency on ImageNet-1k under IPC 10, which serves as
the benchmark for the majority of our ablation studies, we set βdr to 0.0 for this specific benchmark. For the remaining
experiments, including Tiny-ImageNet, CIFAR-10 and CIFAR-100, βdr is set to 0.4.



The Weights of the Loss Function. To underscore the generalization and applicability of our proposed G-VBSM, we
intentionally avoid setting the weights of any loss functions, except for MSE+γ×GT, in a bespoke manner. To be specific,
the weights for both L′

BN and L′
Conv are established at 0.01 for ImageNet-1k, consistent with the weight of LBN, which SRe2L

is set as 0.01 for ImageNet-1k. Since we transposed the loop (i.e., translate the original loop to the reorder loop), the weights
for L′

BN and L′
Conv are set at 0.01 for Tiny-ImageNet, different from SRe2L, which assigns a weight of 1.0 to LBN for the same

dataset. Due to SRe2L was not evaluated on CIFAR-10 and CIFAR-100, we empirically adjusted the weights for L′
BN and

L′
Conv to 0.01 in our experiments. Additionally, the weight of LDD is consistently applied at 1.0 across all datasets. Through

empirical validation in our experiments, we establish that the performance of the distilled dataset – when the weight of LDD
is configured as {0.1, 1.0, 10.0} – remains precisely identical.

B. The Derivation of “match in the form of score distillation sampling”

Our proposed novel loss function, denoted as L′
BN(X̃), draws inspiration from score distillation sampling (SDS) [17]. It is

employed to mitigate the performance degradation that arises from directly substituting the original loop with the reorder
loop. Here, we give the detailed derivation of L′

BN(X̃) to facilitate understanding. First, we give the gradient of the original
loss function LBN(X̃) with respect to X̃:

∂LBN(X̃)

∂X̃
=

∑
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In Eq. 12, µl(X̃)−BNCM
l

||µl(X̃)−BNCM
l ||2

and σ2
l (X̃)−BNCV

l

||σ2
l (X̃)−BNCV

l ||2
are unit vectors that dominate the direction of the gradient descent in the data

synthesis process. As analyzed in Sec.3.1, the precise global statistics generated by all past batches are feasible to assist in
matching between the limited statistics generated by the current batch and BNCM

l as well as BNCV
l . We utilize EMA to update

the statistics µtotal
l and σ2,total

l generated by all past batches:

µtotal
l = αµtotal

l + (1− α)µl(X̃), σ2,total
l = ασ2,total

l + (1− α)σ2
l (X̃). (13)

We can achieve the SDS-like loss by simply replacing µl(X̃)−BNCM
l
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with
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. In this way, the direction of gradient descent for data synthesis is no longer determined by the imprecise

statistics of the single current batch, which ultimately improves the quality of the synthetic data and its ability to generalize
to unseen evaluation models. In practice, we can implement the replacement easily with Pytorch’s [16] stop grad(·) operator:
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∑
l

||µl(X̃)− BNCM
l − stop grad(µl(X̃)− µtotal

l )||2 + ||σ2
l (X̃)− BNCV

l − stop grad(σ2
l (X̃)− σ2,total

l )||2. (14)

We can find the gradient of L′
BN(X̃) with respect to X̃ by derivation as
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Clearly, L′
BN(X̃) effectively achieves our primary purpose. Additionally, our ablation studies in Sec. 4.1 empirically demon-

strate that the “match in the form of score distillation sampling” strategy is remarkable.

C. Additional Ablation Experiments on ImageNet-1k

L′
BN L′

Conv ResNet18 ResNet50 ResNet101
✓ 27.8% 33.4% 35.5%

✓ 24.0% 26.1% 30.4%
✓ ✓ 31.4% 35.4% 38.2%

Table 10. Ablation study about L′
BN and L′

Conv in the synthetic data phase on ImageNet-1k. Meanwhile, ResNet {18, 50, 101} represent
evaluation models.



This section presents ablation experiments for L′
BN and L′

Conv to underscore their equal importance. As illustrated in Table 10,
omitting either L′

BN or L′
Conv from the entire loss function during data synthesis phase leads to a performance decline. Hence,

conducting the “local-match-global” matching via both L′
BN and L′

Conv is essential.

D. Exploratory Studies on CIFAR-10/100
The Choice of Candidate Backbones in GBM. Under IPC 10 on CIFAR-100, we evaluated candidate backbones
{ResNet18, MobileNetV2, WRN-16-2, ShuffleNetV2-0.5}, omitting the 128-width ConvNet, during the data synthesis and
soft label generation phases. In addition, we kept other hyperparameters consistent as shown in Table 9 and obtained the
128-width ConvNet evaluation performance as 32.8%. However, incorporating the 128-width ConvNet into the candidate
backbones increased the accuracy from 32.8% to 38.7%. It’s important to mention that the 128-width ConvNet solely uti-
lizes GroupNorm, not BatchNorm. This enhancement to 38.7% was accomplished by relying solely on statistics within
Convolution, substantiating that statistics in BatchNorm may not be the only option in the data synthesis phase.

Evaluation Model\Epoch 5 10 20 40
128-width ConvNet 46.5% 45.8% 42.5% 42.1%

Table 11. Ablation study about the number of epochs in pre-trained model training phase. We maintain the consistency of other hyperpa-
rameters as presented in Table 9.

The Number of Epochs in the Pre-Trained Model Training Phase. As illustrated in Table 11, fewer pre-training epochs
on CIFAR-10 enhance the generalization of the distilled dataset. This finding could provide an explanation for the remarkable
performance achieved by traditional algorithms [1, 32] on CIFAR-10, even when they employ models with random initial-
izations. As a result, this ablation study informed our decision to pre-train models on CIFAR-10 for only 5 epochs. More
important, as our experiments transition from ImageNet-1k to Tiny-ImageNet to CIFAR-100, and finally to CIFAR-10, the
dataset complexity reduces, and the ideal number of pre-training epochs successively decreases from 100 to 50, to 50, and
finally to 5. The most intuitive and empirical extrapolation is due to the complexity of the dataset, and we believe that this
conclusion may be of some inspiration to other researchers.

E. Additional Explanation of Data Densification
Here we provide theoretical proofs within Eq. 16 to show that entropy H(Σy/τ) (τ > 1) is greater than H(Σy), thus
increasing H(Σy) through Eq. 5, which ultimately improves the entropy of the eigenvalues and ensures the diversity of data.
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F. Statistics Visualization
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Figure 9. Statistics visualization across various backbones {ResNet18, ShuffleNetV2, MobileNetV2, WRN-16-2, 128-width ConvNet} on
CIFAR-100.

It is important to emphasize that Convolution and BatchNorm offer different supervisory information in statistics. As a result,
G-VBSM is more effective than SRe2L when optimized statistics in Convolution and BatchNorm together. For clarity, we
visualized the statistics in the pre-trained models {ResNet18, 128-width ConvNet, MobileNetV2, WRN-16-2, ShuffleNetV2-
0.5} on CIFAR-100 in Fig. 9. In each subplot of Fig. 9, the horizontal axis denotes the layer index (with orthogonal indexes
for Convolution and BatchNorm), while the vertical axis shows the post-sigmoid normalized result. Due to the extensive
dimensions of channel mean and channel variance, we calculate only their mean and variance for visualization. Furthermore,
since BatchNorm is not included in 128-width ConvNet, only Convolution statistics are visualized. From Fig. 9, we can



conclude that the values of the statistics in Convolution and BatchNorm are different in any model, which indicates that
G-VBSM is significant and can enhance the generalization of the distilled dataset as demonstrated in Fig. 5.
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Figure 10. The experimental result of continual learning application on ImageNet-1k under IPC 10.

G. Continual Learning Application
Many data condensation algorithms [34, 38, 41] have evaluated the generalization ability of distilled datasets in continual
learning. We follow the class-incremental learning approach2 adopted in DM [41] for performing this task. Similar to the
ablation studies of the main paper, our experiments are conducted on the full 224×224 ImageNet-1k, underscoring that G-
VBSM is intended for use with large-scale datasets. We conduct class incremental learning with ResNet18 on the 10-step
class-incremental learning strategy under 10 IPC. The experimental results are illustrated in Fig. 10. We can discover that
G-VBSM significantly outperforms SRe2L, thus confirming the usefulness and effectiveness of G-VBSM.

H. Date Free Pruning Application

Data Free Pruning
(ImageNet-1k, VGG-A, 50% Pruned)

IPC 10 IPC 10 IPC 50 IPC 50
SRe2L SRe2L+DD SRe2L SRe2L+DD

Top-1 Val Accuracy 12.5% 12.9% 31.7% 32.8%

Table 12. The experimental result of data free pruning application on IamgeNet-1k.

Data Free Pruning of Slimming aims to reduce the model size and decrease the run-time memory footprint simultaneously
for convolutional nerual network. We argue that the distilled dataset facilitates efficient data-free pruning. To substantiate
this claim, we conduct experiments on ImageNet-1k with IPC 10. As illustrated in Table 12, data densification enhances
downstream knowledge transfer as above by increasing synthesized data diversity and significantly boosting SRe2L.

I. Synthetic Data Visualization
We provide more visualization results on synthetic data randomly selected from G-VBSM in Figs. 11 (ImageNet-1k), 12
(Tiny-ImageNet), 13 (CIFAR-100) and 14 (CIFAR-10).

2This involves gradually increasing the number of classes and combining previously stored data with newly acquired data to train a model from scratch.



Figure 11. Synthetic data visualization on ImageNet-1k randomly selected from G-VBSM.



Figure 12. Synthetic data visualization on Tiny-ImageNet randomly selected from G-VBSM.



Figure 13. Synthetic data visualization on CIFAR-100 randomly selected from G-VBSM.



Figure 14. Synthetic data visualization on CIFAR-10 randomly selected from G-VBSM.
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