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Figure A1. Dataset for head avatar. We collected 10 subjects from publicly available datasets for the evaluation of head avatar modeling,
with (a–e) from INSTA [7], (f) from NHA [3], (g, h) from IMAvatar [5], and (i, j) from NerFace [2]. We show the rendering results on the
testing samples. Our method captures high quality details, for example the light in the eyes, the texture of the hair, and off-surface geometry
like the glasses.

In this supplemental document, we elaborate details about
the dataset for head avatar in Sec. 1, implementation details
in Sec. 2, and additional experimental comparisons in Sec. 3.

1. Dataset

In Figure A1, we show the 10 evaluated subjects that we
collected from publicly available datasets, i.e., INSTA [7],
NHA [3], IMAvatar [5], and NerFace [2]. The rendering re-
sults are from Ours+FLAME. Our method show high quality
rendering capability with high fidelity details especially in
the eyes, hair, and glasses.

2. Implementation Details

Training. We chose λmse = 10.0, λl = 0.01, λs = 1.0,
Ts = 10.0 and Tr = 0.008 all through the experiments.
We followed the original implementation of 3D Gaussian
Splatting [4] to set the total number of iterations to 30,000
for each subject. Starting from iteration 600, the densify and
prune process were conducted every 100 iterations. Every

3000 iterations, the opacity of all the Gaussians were reset
to zero. We find this opacity-reset step effective in removing
redundant Gaussians. The densify, prune, and opacity-reset
process stop at iteration 15,000.

Unity rendering. As described in the main paper, in our
Unity implementation, we draw one quad primitive for each
Gaussian. The quad primitives are illustrated in Figure A2.
Benefiting from our trainable embedding scheme, the embed-
dings of the Gaussians were efficiently ported to compute
shaders for the motion control of the Gaussians, leading to
an animatable avatar running over 300 FPS on an NVIDIA
RTX 3090 GPU.

Running time. With our pybind11 implementation, the walk-
ing on triangle step takes around 3.5 ms. We conduct this
step after densifying and pruning. For comparison, densify-
clone takes 2.5 ms and densify-split takes 6 ms.

The whole optimization follows the conversion of the
original Gaussian Splatting that the number of total iterations
is 30000, and the densify, prune, and walking on triangle
steps are performed every 100 iterations.
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Figure A2. Gaussian Splatting rendering in Unity. Our Unity implementation of Gaussian Splatting is conducted by drawing one quad
primitive for each Gaussian. We show (a) the driving mesh for the current pose, (b) the quad primitive for each Gaussian, (c) the 2D
covariance of the Gaussians illustrated by eclipses, and finally (d) the rendering result with α-blending.
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Figure A3. Comparison with INSTA in the eye region. INSTA [7]
propose to find the nearest triangle when deforming a point in the
posed space to the canonical space, causing unstable sampling in
the canonical space and strong noise when dealing with complex
geometries like the eye. Our embeddings-based motion control of
the Gaussians leads to smooth rendering results.

3. Additional Results

Comparison with FLARE. FLARE [1] is a mesh-based
avatar modeling approach focusing on relightable avatar re-
constructed from monocular videos, which is published very
recently. In Table A1, we show comparison with FLARE
on our head avatar dataset. FLARE [1] reconstruct accurate
geometry and materials of the avatar that our method does
not focus on, while the strength of our method is the signifi-
cant improvement in photometric quality and efficiency in
rendering. Qualitative comparison is shown in Figure A4.
Non-ambiguous motion control. One of the key benefits
of our method is the non-ambiguous motion control compar-
ing to the backward tracing process of NeRF-based avatar
rendering. INSTA [7] propose to simplify this step by find-
ing the nearest triangle for the deformation from the posed
space to the canonical space. We show in Figure A3 that this
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Figure A4. Comparison with FLARE. We show qualitative com-
parison with FLARE [1].

simplification causes significantly more noise when dealing
with complex geometries like in the eye region.
Error map. Due to the limitation of segmentation and head
tracking in the pre-processing pipeline. The metrics of pho-
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Figure A5. Heatmaps of l1 error. We show the heatmaps illustrating the l1 RGB distance of the rendered images. Our methods and
INSTA [7] show overall better quality. The rendering quality of PointAvatar [6] and NHA [3] are limited by their point-based and mesh-based
representations respectively.

Method PSNR↑ SSIM↑ LPIPS↓
FLARE [1] 23.87 0.893 0.129

Ours+FLAME 28.19 0.931 0.063
Ours+NHA 28.86 0.931 0.060

Table A1. Quantitative comparison with FLARE. We show
comparison with the recently published avatar modeling method
FLARE [1] on our head avatar dataset.

tometric error in the main paper was affected by the error
mostly in the neck area. We show in Figure A5 the error
maps of the evaluated methods. Our methods and INSTA [7]

Method PSNR↑ SSIM↑ LPIPS↓

bala w/o walking 29.91 0.933 0.070
w/ walking 30.04 0.938 0.062

male-3-casual w/o walking 32.48 0.979 0.024
w/ walking 33.01 0.982 0.020

Table A2. Quantitative ablation on walking on triangle.

show overall better quality. PointAvatar [6] and NHA [3]
both focus on relightable modeling with explicit shape rep-
resentations, which compromise their performance in terms
of pixel-wise metrics.
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Figure A6. Ablation on walking on triangle. Disabling walking
on triangle leads the Gaussians to stick and pile up on triangle
boundaries, and cause artifacts when animated by novel poses.

Ablation on walking on triangle. We firstly conducted an
ablation study on head avatar bala where we disabled the
walking on triangle mechanism and clipped the UV values to
prevent the Gaussians from moving beyond their correspond-
ing triangles. In addition to the performance drop as listed
in Table A2, the Gaussians tend to stick and pile up on the
boundaries of the mesh triangles as shown in Figure A6. The
performance drop was more significant in the second exper-
iment on full-body avatar male-3-casual. Especially when
animated by novel poses, turning off walking-on-triangle
resulted in noticeable artifacts.

References
[1] Shrisha Bharadwaj, Yufeng Zheng, Otmar Hilliges, Michael J.

Black, and Victoria Fernandez Abrevaya. FLARE: Fast learn-
ing of animatable and relightable mesh avatars. ACM Transac-
tions on Graphics, (Proc. SIGGRAPH Asia), page 15, 2023. 2,
3

[2] Guy Gafni, Justus Thies, Michael Zollhöfer, and Matthias
Nießner. Dynamic Neural Radiance Fields for Monocular
4D Facial Avatar Reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 8649–8658, 2021. 1

[3] Philip-William Grassal, Malte Prinzler, Titus Leistner, Carsten
Rother, Matthias Nießner, and Justus Thies. Neural Head
Avatars From Monocular RGB Videos. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 18653–18664, 2022. 1, 3

[4] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and
George Drettakis. 3D Gaussian Splatting for Real-Time Radi-
ance Field Rendering. ACM Transactions on Graphics, 42(4),
2023. 1

[5] Yufeng Zheng, Victoria Fernández Abrevaya, Marcel C. Bühler,
Xu Chen, Michael J. Black, and Otmar Hilliges. I M Avatar:
Implicit Morphable Head Avatars From Videos. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 13545–13555, 2022. 1

[6] Yufeng Zheng, Wang Yifan, Gordon Wetzstein, Michael J.
Black, and Otmar Hilliges. PointAvatar: Deformable Point-

Based Head Avatars From Videos. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 21057–21067, 2023. 3

[7] Wojciech Zielonka, Timo Bolkart, and Justus Thies. Instant
Volumetric Head Avatars. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4574–4584, 2023. 1, 2, 3


	. Dataset
	. Implementation Details
	. Additional Results

