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The supplementary document offers an extensive
overview of our approach, detailed insights into our imple-
mentation details, and a comprehensive analysis of results.

A1l.1 Additional Details of Sparse Semi-DETR

The Sparse Semi-DETR framework is an extension of Semi-
DETR (the first semi-supervised DETR-based framework).
Labeled data is used for student network training, employ-
ing a supervised loss. The Sparse Semi-DETR framework
processes unlabeled data through two distinct pathways: the
teacher network, which receives weakly augmented data,
and the student network, which is fed with strongly aug-
mented data. The teacher network utilizes the unlabeled data
to produce pseudo-labels. Meanwhile, the student model
undergoes parameter refinement via back-propagation. In
contrast, the teacher model’s parameters are updated, follow-
ing the exponential moving average (EMA) of the student
model.

Additional Details of Semi-DETR. Semi-DETR is a DETR-
based semi-supervised framework that introduces cross-view
query consistency and stage-wise hybrid matching strategies.
(1) In CNN-based semi-supervised object detection (SSOD)
frameworks [1, 39, 11], consistency regularization is easily
implemented by minimizing differences between teacher and
student model outputs, given the same input but with differ-
ent augmentations. However, this approach is not directly
applicable in DETR-based SSOD frameworks due to the lack
of clear correspondence between input object queries and
output predictions. To address this, a novel cross-view query
consistency module is proposed. It processes Rol features
through MLPs, and generates cross-view query embeddings.
These embeddings are combined with original object queries
and fed into a decoder. (2) Semi-DETR initially uses a
one-to-many assignment in early training, allowing multiple
predictions per pseudo-label. It speeds up convergence and
improves label quality but can cause redundant predictions.
It then switches to one-to-one assignment, reducing redun-
dancy and aiming for an NMS-free final model. However,
its effectiveness on small objects is limited. Our Sparse
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semi-DETR refines object queries, enhancing small object
detection and accuracy.

A1.2 Additional Details of Implementation.

The implementation of the Sparse Semi-DETR approach is
based on MMdetection framework [2]. We integrate data
pre-processing methodologies from Soft-Teacher [8]. We
train the network on 8 GPUs (RTXA6000), which takes
roughly two training days to complete 120k training itera-
tions. Elaborating on training hyperparameters for different
benchmarks: (1) COCO-Partial Setup: We train the network
using 8 GPUs for 120k iterations, with each GPU handling
five images. It employs one-to-many assignment strategy
for first 60k iterations and then one-to-one assignment strat-
egy for 60k-120k iterations. (2) COCO-Full Setup: For this
benchmark, we train for 240k iterations, employing one-to-
many assignment strategy for first 180k iterations and then
one-to-one assignment strategy for 180k-240k iterations. We
use 8 GPUs with eight images per GPU. (3) Pascal VOC
Setup: Here, first 40k iterations adopt a one-to-many as-
signment strategy and then one-to-one assignment strategy
for 40k-60k iterations. Across all our experimental setups,
we’ve kept the confidence threshold constant at 0.4. We
use the Adam optimizer and set the learning rate to 0.001.
We avoid using learning rate decay for a fair comparison
with Semi-DETR [10]. Complete implementation details are
provided in Table 1.

Data Augmentation. We adopt the same data augmentation
scheme as in Semi-DETR, detailed in Table 2. We employ
weak augmentation on unlabeled data for generating pseudo
labels, while strong augmentation is utilized for both labeled
and unlabeled data during the model’s training.

A1.3 Additional Details of Results.

Additional Details of Query Refinement Module. We

perform additional experiments to assess the efficacy of our

query refinement approach as follows:

1. Is the attention module crucial in query refinement?
Could we apply attention to just low or high-resolution



training setting COCO-Partial | COCO-Full VOC Ablation
batch size 5*%8 8*8 5*8 5*8
labeled to unlabeled data ratio 1:4 1:1 1:4 1:4
learning rate 0.001 0.001 0.001 0.001
first stage iterations 0-60K 0-180K 0-40K 0-60K
second stage iterations 60k-120K 180k-240K | 40k-60K | 60k-120K
iterations 120K 240K 60K 120K
unsupervised loss weight o 4.0 2.0 4.0 4.0
EMA rate 0.996 0.999 0.999 0.999
confidence threshold 0.4 0.4 0.4 0.4

Table 1. Training settings for different datasets. Here, ‘Ablation’ means the training setting of the ablation studies in the paper.

Augmentation

Labeled image training

Unlabeled image training

Pseudo-label generation

Scale Jitter

shortest edge € [480, 800]

shortest edge € [480, 800]

shortest edge € [480, 800]

Solarize Jitter

p = 0.25, ratio€ (0, 1)

p = 0.25, ratio€ (0, 1)

Brightness p = 0.25, ratio€ (0, 1) p = 0.25, ratioe (0,1) -
Contrast Jitter p = 0.25, ratioe (0, 1) p = 0.25, ratioe (0, 1) -
Sharpness Jitter p = 0.25, ratioe (0, 1) p = 0.25, ratioe (0, 1) -
Translation - p = 0.3, translation ratioe (0, 1) -
Rotate - p = 0.3, angle€ (0, 30°) -
Shift - p = 0.3, angle€ (0, 30°) -
Cutout nume (1, 5), ratio€ (0.05,0.2) | nume (1,5), ratio€ (0.05,0.2) -

Table 2. Data augmentations used in our approach. p indicate the probability of choosing a certain type of augmentation.

features exclusively, or should it be applied to both high
and low-resolution features for optimal results?

2. Is the integration of a similarity module crucial in query
refinement? How would training be impacted if we dis-
regarded similarity features and considered all features
comprehensively?

Impact of Attention module: In our Query Refinement,

we refine the queries by applying the attention module on

F, features and combining them with F}; features. In this

experiment, we study the impact of the attention module in

Query Refinement, as highlighted in Table 3. Figure 1 (a)

illustrates the concatenating high-resolution features after

extracting similar features from the low-resolution without
applying an attention network to either set of features. Sec-
ondly, as indicated in Figure 1 (b), we apply the attention
network on both sets of features. In Figure 1 (c), we extract
similar features from the F}o and apply the attention network
on just Fy; features. In Figure 1 (d), we apply the attention
network on F}5 features and find similarity with F}; features
that gives the best results. The model can focus on capturing
essential information by applying the attention module to

F}o features. When these enhanced Fyo features are com-

pared for similarity with F}; features, the model can get

refined detail. It enables the model to make more accurate
predictions, leading to better overall performance.

Impact of Similarity module: We reduce the number of

Attention
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Table 3. Impact of Attention module. Here, F}; and Fi» are the
high resolution and low resolution features, respectively.

queries in query refinement by filtering similar query fea-
tures in low-resolution features. As indicated in Table 4,
removing the similarity module results in a performance
decline of 0.3 mAP, increasing the number of queries in a
one-to-many training strategy. It confirms the importance of
the similarity module in our query refinement strategy. The
effectiveness of refined queries using the similarity module
is because when enhanced low-resolution features are com-
pared for similarity with high-resolution features, the model
can effectively correlate the relevant information from both
levels of detail, improving performance.

Qualitative comparison with the baseline. We employ
Semi-DETR as the baseline and analyze the impact of Query
Refinement on the one-to-many assignment strategy, as in-
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Figure 1. Overview of the Impact of Attention Module in Query Refinement. (a) Query refinement without an attention module, (b) Attention
module applied to both low and high-resolution features, (c) Attention module applied to high-resolution features, and (d) Attention module
applied to low-resolution features. The best results are achieved for refining queries by applying the attention module to low-resolution

features and then combining these with high-resolution features.

(a) Ground truth

(b) Semi DETR

(c) Sparse Semi DETR

Figure 2. Qualitative Comparison of positive proposals in One-to-Many assignment strategy: (a) Ground Truth (b) Semi-DETR (c) Sparse
Semi-DETR. Our approach, compared to Semi-DETR, generates more refined positive proposals for each ground truth. Here, ground
truths are outlined in red, while the positive proposals are highlighted in green. Sparse Semi-DETR performs better in identifying small or
hidden objects, as indicated by positive proposals around such items. It employs an attention mechanism, focusing on finer image details,
which enhances the detection of hidden objects. Additionally, its similarity module further refines the proposal quality, leading to a notably

improved identification accuracy.

Similarity o eries () mAP APy APy
Fy Fp #Fn << #Fp
X X #(Fn+Fo) 440 611 475
X v #(2% Fy) 443 617 476

Table 4. Impact of Similarity module. Here, F}; and Fio are the
high resolution and low resolution features, respectively.

dicated in Figure 2. Sparse Semi-DETR generates more
accurate and refined positive proposals for detecting small

or hidden objects. Furthermore, our method significantly
reduces the input queries to the decoder compared to Semi-
DETR in the one-to-many assignment strategy. As evidenced

Approach Training time

(min)
Semi-DETR 38.56
Sparse Semi-DETR | 34.38 +4.18

Table 5. This is the training time for 1k iterations in one-to-many
assignment strategy.



Semi-DETR Sparse Semi-DETR

(a) Results on small objects

(b) Results on obscured objects
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Figure 3. Qualitative comparison on the COCO test set. The prediction results are in red, and the green boxes refer to the prediction
difference in Semi-DETR and Sparse Semi-DETR. (a) Small Objects: Semi-DETR, on the left, has missed detections of bird objects,
indicated with green bounding boxes as false negatives. On the right, red bounding boxes signify correctly identified birds, showcasing
Sparse Semi-DETR’s more precise and reliable detection capabilities for smaller objects. (b) Obscured Objects: The green boxes indicate
the regions where the Semi-DETR has either failed to detect an object (false negatives) as the chair or incorrectly estimated the region
of the objects, like the person. Sparse Semi-DETR detects obscured objects more precisely, improving performance in complex visual
environments.




Semi-DETR Sparse Semi-DETR

(a) Inaccurate localization

(b) Inaccurate classification

Figure 4. Qualitative comparison on the COCO test data. The prediction results are in red, and the blue boxes highlight the prediction
difference in Semi-DETR and Sparse Semi-DETR. (a) Inaccurate localization: Semi-DETR incorrectly places multiple bounding boxes
around the individual cow and bird objects, indicating it misidentified them as several entities instead of one. Sparse Semi-DETR, however,
shows reduced duplications in bounding boxes. (b) Inaccurate classification: Semi-DETR partially misidentified a cat wearing a tie as
the tie itself and confused a 'remote’ object with a ’cell phone’ as represented with a blue bounding box. Sparse Semi-DETR reduces the
misidentification issues present in Semi-DETR, such as not confusing a cat wearing a tie as the tie itself and correctly identifying a remote’
without mistaking it as a "cell phone.’



in Table 5, this refinement of queries has resulted in a training
time reduction of 4.18 minutes on 1k iterations, amounting
to a relative decrease of 10.84%. To further compare our
Sparse Semi-DETR with the baseline Semi-DETR, we vi-
sualize the predicted bounding boxes on test2017, trained
on the COCO 10% label data. In Figure 3 and Figure 4,
we plot the predicted bounding boxes in red, while green
and blue boxes highlight the differences in the prediction of
Semi-DETR and Sparse Semi-DETR. There are four general
properties that we could observe in our demonstration.

1. Firstly, Sparse Semi-DETR significantly improves the
detection of small objects compared to Semi-DETR, pri-
marily due to its advanced query refinement mechanism.
As shown in Figure 3 (a), Sparse Semi-DETR is partic-
ularly beneficial for identifying small subjects such as
birds, where Semi-DETR often struggles because of its
inadequate query feature representation. By capturing
refined details, Sparse Semi-DETR ensures more precise
and reliable detection of these smaller objects, enhancing
overall performance in object detection tasks.

2. Secondly, for obscured objects, Sparse Semi-DETR pro-
vides a distinct advantage over Semi-DETR through its
refined query mechanism as indicated in Figure 3 (b). It
allows Sparse Semi-DETR to understand better details of
partially hidden objects, which is often challenging for
Semi-DETR due to its less robust query features. As a re-
sult, Sparse Semi-DETR achieves more precise detection
of obscured objects, leading to improved performance in
complex visual environments.

3. Thirdly, Sparse Semi-DETR exhibits a significant advan-
tage in removing duplicate predictions after the second
stage. It is because of a reliable pseudo-label filtering
module that filters out some duplications and selects more
accurate pseudo-labels. A notable example is the detec-
tion of cow objects, as shown in Figure 4 (a). While
Semi-DETR tends to provide two predictions for the same
object, Sparse Semi-DETR demonstrates remarkable pro-
ficiency in duplicate removal.

4. Fourthly, in the semi-supervised setting, Semi-DETR of-
ten faces challenges in accurately categorizing objects,
even when the location is correctly identified. For exam-
ple, Semi-DETR labels a ‘remote’ object as a ’cell phone’
despite accurately providing its location as indicated in
Figure 4 (b). This misclassification often arises from a
disparity between the features used for object detection
(regression) and those used for classification. In contrast,
Sparse Semi-DETR stands out by adeptly distinguish-
ing between closely related categories. It leverages its
innovative attention and similarity module, which dynam-
ically selects the most relevant features for each task,
ensuring a more unified and accurate performance in both
classification and localization.
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