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Figure 1. System prototype, top view.

1. Prototype Hardware-related details
1.1. Prototype components description

An image of our system is shown in Fig. 1. The thermal
camera is an Industrial Grade FLIR Boson+ 640 having 24◦

Horizontal Field of View (HFOV) [1]. The projector is a
combination of a laser and a Thorlabs GVS212 dual-axis
scanning galvo systems. We used two lasers in our exper-
iment: a 532 nm 150mW Coherent Sapphire low-power
(LP), and an off-the-shelf 520 nm 1W consumer grade
laser [2]. Besides a sufficiently high wattage to quickly cre-
ate a slight surface temperature rise, our method requires
no special laser features (e.g., temporal or spectral stability,
beam width, and more). The pattern is executed by sending
analog voltages to the galvo systems from an NI USB-6343
DAQ. The projector and camera are temporarily synchro-
nized using separate clocks from an Arduino Due to achieve
precise control of the pattern points projected in each frame.

1.2. Microbolometer thermal cameras

In this paper, we image the scene using an LWIR
microbolometer-based sensor whose image formation
model differs from standard visible-light cameras [11].
Visible-light CMOS and CCD cameras measure the in-

coming light intensity by ‘counting’ the number of pho-
tons arriving at each pixel during the exposure time. Con-
versely, a microbolometer sensor measures the incident
power of infrared light during continuous exposure. The
incident power per pixel is sampled at regular time inter-
vals T samp and converted to temperature readings, where
1/T samp yields capture speeds similar to standard cameras
(e.g., 30Hz). This difference in image formation models
benefits our method, as explained next.

In a standard RGB camera, the motion of a scene light
source during the exposure time results in a ‘motion blur’
curve. Given the image of the resulting curve, it is gener-
ally impossible to discern the temporal light source trajec-
tory during the exposure and, specifically, its location at the
end of the exposure time (unless additional light encoding is
used [7]). Conversely, roughly speaking, the ‘motion blur’
model of a microbolometer follows an exponential decay
backward in time. This means that for the same heat point
source trajectory that resulted in a curve for the RGB cam-
era, our thermal image would result in a point having an ex-
ponentially decaying ‘trail.’ Thus, the point’s location at the
frame sample time is much easier to determine and roughly
corresponds to the point’s peak image intensity.

1.3. Projector-camera synchronization constraints

The synchronization between the camera and the galvo
was achieved by generating digital sync clocks using an Ar-
duino. The clock periods were determined using Arduino’s
delayMicroseconds() function. Since the function is
limited to integer microseconds (e.g., 1666 µ sec for a 30Hz
clock), generating precise clock fractions was impossible
(e.g., 1666/3 for K = 3).

1.4. Laser safety considerations

Our prototype used green lasers whose power was suf-
ficiently high such that unintended eye exposure may be
harmful. However, our system can borrow the power regime
of long-range LIDARs that use a 1550 nm lasers. At this
wavelength, a laser can be 40x times more powerful and
still be considered eye-safe. Specifically, The Maximum
Permissible Exposure (MPE), which states the highest per-
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missible power density [W/cm
2] of 1.4 µm lasers, is about

three orders of magnitude larger than our green lasers for
our system’s typical T dot (i.e., 0.01 sec) [9]. This is be-
cause the cornea and lens of the eye strongly absorb wave-
lengths longer than 1.4 µm, preventing them from reaching
the retina, which is far more sensitive [10]. Thus, using a
1.4 µm to 1.5 µm lasers with the powers detailed in Sec. 1.1
could be operated in an eye-safe regime.

2. System Calibrations
Our system requires two calibrations. First, the camera

matrix and distortion coefficients are computed by captur-
ing a standard black-and-white circle-grid pattern illumi-
nated by a hot Halogen lamp. The lamp raises the black
circles’ temperature compared to the white background, re-
vealing the pattern in the infrared and allowing the circle
detection (e.g., using OpenCV).

Secondly, we calibrate a Homography matrix that maps
between the camera’s pixel coordinates and the Galvo ana-
log voltages. This is done by projecting and detecting a grid
of laser dots on a plane located at our system’s typical work-
ing distance. The Dual-Axis Galvo consists of two mirrors,
which causes the Homography to deviate slightly in planes
distant from the calibration plane. However, this distortion
had little effect on our experiments since our projection-
diffusion reversal network was intentionally trained using
noisy predicted point locations in G(Pf,m).

3. Constructing the G input channel
As described in Section 5.1 of the main paper, to reverse

the projection-diffusion of frame f+m with respect to frame
f , we feed the network with a concatenation of three chan-
nels: frame f+m, heatmap image G, and a constant image
with value 0.1m. In this section, we describe how to con-
struct G.

Image G is a heatmap that ‘informs’ the network of the
predicted spatial locations of the new points Pf,m. How-
ever, as illustrated in Fig. 6 of the main paper, the imaged
point locations will deviate from Pf,m due to scene motion.
Therefore, we construct G(Pf,m) by assigning projection-
order-depended spatial uncertainty to each point.

We construct G by first placing a value of 1 at each pro-
jected image point and then convolving each point with a
normalized Gaussian whose variance is a monotonically in-
creasing function of the temporal distance |tn − tf+m|:

G(Pf,m) =
∑

(xn,tn)k∈Pf,m

exp

(
− x2

2σ(|tn − tf+m|)2

)
∗ δ(x−xn).

(1)
In our training, we set σ(t) = 3+ 2.5t, where the constants
were calibrated empirically. As detailed in Section 4, during
training, image G is constructed on the fly for every training

example with slightly perturbed locations Pf,m. Therefore,
to speed up the training process, we precompute all the nor-
malized Gaussian kernels in Eq. (1) and efficiently insert
them into G using addition.

4. Additional Training Details
This section provides additional technical details about

the projection-diffusion reversal network training proce-
dure. As mentioned in Section 5.2 of the main paper, the
raw 16 bit readouts from the thermal camera are scaled to a
[0, 1] domain using Eq. (9). We set the constants a and b in
Eq. (9) using:

b = Imax − Imin + 600

a = Imin − 200, (2)

where Imax and Imin are the 99.999 and 0.00001 percentile
pixel values over all dataset frames. The margin constants in
Eq. 2 were added for robustness. In the learning and testing
stages, the thermal frames were further scaled to a [−1, 1]
range using I(x, f)← 2(I(x, f)− 0.5).

We used the following data augmentations during train-
ing. First, to emulate different ambient temperatures during
training, we shift the intensity of each training frame pair:

I(x, f)← I(x, f) + β

I(x, f +m)← I(x, f +m) + β, (3)

where β is uniformly sampled from [−0.1, 0.1]. Then, to
emulate scene motion, we add a random spatial shift to each
point in Pf,m when constructing G(Pf,m). This augmen-
tation forces the network to detect new and undiffuse ex-
isting points accurately, even when the heatmap values in
G(Pf,m) do not perfectly align with the newly projected
point centers. Finally, we apply the same 128×128 ran-
dom crop on the three-channel f +m frame and the refer-
ence single-channel f frame. The random crop prevents the
network from memorizing the pattern point locations. We
trained the network for 500 epochs, which lasted about 16 h
on a single GeForce GTX 1080 Ti GPU.

5. Thermal Camera Model Approximation
The Sakuma–Hattori equation of Eq. (1) of the main pa-

per, reproduced below, is a mathematical model for con-
necting an object’s surface temperature T and the raw read-
out values S(T ) of a microbolometer thermal camera

S(T ) =
c1

exp c2
c3T+c4

− 1
. (4)

This formulation assumes a perfect blackbody and temper-
atures lower than the melting point of silver [12]. Neverthe-
less, the form given in Eq. (5) can be used to model real-
world camera data by curve fitting the constants c1 − c4.



Figure 2. Camera response model. (Top) Plot showing a typi-
cal thermal camera response [3], modeled by curve fitting with
Eq. (5). (Bottom) The camera model response is approximately
affine in the camera’s working range, with a curve fitting yielding
a coefficient of determination of 0.9992.

However, as shown in Fig. 2, in the camera’s effective
temperature range (i.e., −40◦ to 80◦), the camera model
response is approximately affine:

S(T ) =
c1

exp c2
c3T+c4

− 1
≈ c5T + c6, (5)

with c5 and c6 being some other constants. Importantly,
this means that an increase in temperature δT yields the
same increase in camera readout counts independent of the
absolute room temperature. Consequently, our projection-
diffusion network must only learn to reverse diffusion based
on the local temperature increase (above ambient) and not
T itself.

6. Thermal point tracking
In Section 6 of the main paper, we describe how to adapt

our method for dynamic vision tasks. Specifically, we ex-
plicitly track the projected pattern points between frames to
generate point matches for a Structure from Motion solver.

After detection, we track the points using a Lucas-
Kanade feature tracker [5]. The projection-diffusion rever-
sal network ensures that the visual appearance of tracked
patches is maximally consistent between every two input
frames. However, as shown in Fig. 4 of the main paper and
Fig. 4 here, the tracked points’ SNR decreases with time,
which may degrade the point-matching accuracy for long
point tracks. Therefore, we track the points as long as their
visual appearance exceeds a certain threshold.

Figure 3. Indoor localization using every other frame. (Top)
When using every other frame (m= 2), the visual difference be-
tween frame pairs is large, degrading the SfM reconstruction per-
formance when reconstruction without the projection-diffusion re-
versal network. (Bottom) The PDR network matches the appear-
ance of frame pairs, facilitating a significantly better reconstruc-
tion.

Our experiments used a zero mean cross-correlation
(ZNCC) score to measure the patches’ visual quality [6].
Specifically, for each point, we store a 15 × 15 pixel patch
around the point from the frame at which the point was first
detected. Then, for each subsequent frame, we compute a
ZNCC score between the initially stored patch and the patch
around the currently predicted point location. For each
point, tracking is continued as long as the point’s ZNCC
score is above 0.75.

7. Additional Experimental Results
7.1. Indoor localization using m = 2

Fig. 9 of the main paper shows an indoor localization
result using our system. The experimental result shown
in Fig. 9 was computed using consecutive video frames
as input to the point tracking algorithm, namely m = 1.
The floor carpet material on which the patterns were pro-
jected exhibited a low thermal diffusivity, yielding a slight
change in point appearance between consecutive frames (at
30Hz). Moreover, the projected pattern points were spread
across the entire camera’s field of view, creating a relatively
sparse pattern in which the newly projected points are eas-
ily isolated (even without the PDR’s assistance). For these
two factors, applying our method without correcting the
frames using the projection-diffusion reversal (PDR) net-
work yielded comparable results.

However, as shown in Fig. 3 here, running the
reconstruction using every other frame (m=2) immediately
reveals the PDR network’s effectiveness. Specifically, the
change in appearance between every other frame was suffi-



ciently large to affect the tracking stage such that COLMAP
failed in reconstructing the scene, yielding five separate
submodels that could not be merged using COLMAP’s
model merger module (see Fig. 3(Top)). Conversely,
as seen in Fig. 3(Bottom), applying the PDR network for
m = 2 produced a similarly accurate result to the original
result in Fig. 9 of the main paper.

The comparison in Fig. 3 is another example of the PDR
network’s effectiveness for tracking thermal patterns when
prior vision frameworks are used. While in this particular
experiment, using m=2 was unnecessary, this capability
is beneficial for several reasons, even for surfaces like the
carpet in Fig. 9 of the main paper. For instance, U.S. gov-
ernment export control requires selling the camera used in
this paper to various countries with reduced frame rates
(i.e., 9Hz), which would necessitate a larger diffusion re-
versal [4] (equivalent to m= 3 compared to 30Hz mode).
Moreover, real-world applications may suffer from occa-
sional corrupt frames due to camera shakes, momentary
occlusions, or flashing of external heat sources that would
require a robust system to match between non-consecutive
frames.

7.2. Laser absorption vs. object albedo

In Fig 4, we tested the laser’s absorption on various albe-
dos. In Fig 4(Left), we projected dots having the same
duration on the neutral patches of a standard color chart.
The plot shows the imaged maximum temperature rise in
the percentage of the black albedo patch (i.e., bottom right
patch). As expected from Eq. (2) of the main paper, the
temperature rise is proportional to the albedo. Fig 4(Right)
shows an imaged pattern projected on a white office wall
using the 1W laser with a T dot = 16.6ms (i.e., K = 2),
while Fig 4(Bottom) shows the SNR plot of a single wall
point. Fig 4 shows that the projected pattern is visible and
trackable even on a white wall.

7.3. Poorly behaving materials

As mentioned in Section 9 of the main paper, our method
relies on remotely heating local surface patches on scene
objects. The laser heating process depends on various ma-
terial properties, such as the material’s absorption of the
laser’s wavelength (i.e., albedo), thermal conductivity and
diffusivity, and emissivity in the camera’s infrared range.
Fig. 5 shows various examples of materials where the prop-
erties above for these materials yield poor performance,
namely, low laser heating and fast point diffusion.

For example, objects made of metal (e.g., the “REI cup”,
“water flask” and “drink can” in Fig. 5), even if painted
black, will behave poorly due to the metal’s high thermal
conductivity, causing the heated points to diffuse rapidly
and last only a few frames (and even less than one frame
as seen in Fig. 5). Moreover, objects having low emissivity

Figure 4. Laser absorption vs. object albedo. (Left) Plot show-
ing the relative measured signal intensity for patches of varying
albedo. The intensity is relative to the bottom-right black patch.
(Right) A single thermal frame of a pattern projected on a white
office wall with K = 2. (Bottom) SNR plot for a single point wall
pattern point in (Right).

(e.g., the “RI mug” and ’drink can’ in Fig. 5) will mostly re-
flect and not absorb (and emit back) the laser radiation. This
is evident when observing the “drink can” thermal frames.
The can is made out of aluminum, which has a notable low
emissivity [8], manifesting in the strong specular reflections
of the surrounding objects, as seen in Fig. 5. Notably, for
the can, the projected laser dots are entirely imperceptible.
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