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A. More details of the projected fixed point
method

Consider the objective function

Z(M) =
1

2
tr
(
MTAMÃ

)
+ λ tr

(
MTK

)
. (31)

Given an initial condition M (k), we can linearize the objec-
tive function at M (k) via the Taylor series approximation:

Z(M) ≈ Z(M (k)) + tr
{
∇Z(M (k))T (M −M (k))

}
(32)

One can find an approximate solution to (31) by maximiz-
ing a sequence of the linearization of Z(M) in (32). Since
M (k) is a constant, the maximization of the linear approx-
imation is equivalent to the following linear assignment
problem

max
M∈Σn×n

tr(∇Z(M (k))TM) = max
M∈Σn×n

⟨∇Z(M (k)),M)⟩,

(33)
Therefore, the quadratic assignment problem can be trans-
formed into a series of linear assignment problems. This
idea is first proposed in [8] with a different objective func-
tion. The solution to each linear assignment problem in (33)
can be shown as

M (k) = P(∇Z(M (k−1))). (34)

where P is a projection that includes the doubly stochastic
projection used in [23] and the discrete projection used in
[19]. A generation of such an iterative formula is

M (k) = (1− α)M (k−1) + αP(∇Z(M (k−1))). (35)

Such a formula can cover all the points between two doubly
stochastic matrices. The resulting algorithm is called the
projected fixed-point method [19].

B. Proofs of Proposition 1 and Proposition 2
Proposition 1 For a square matrix X and β > 0, we have

|⟨Sβ
X , X⟩−⟨S∞

X , X⟩| ≤ ∥Sβ
X−S∞

X ∥∥X∥ ≤ c

µ
(e(−µβ))∥X∥,

(36)
where c and µ > 0 are constants independent of β.

Proposition 2 For a square matrix X and β, ∆β > 0, we
have

∥Sβ
X − Sβ+∆β

X ∥ ≤ (1− e(−µ∆β))
c

µ
e(−µβ), (37)

where c and µ > 0 are constants independent of β.

Proof We first transform the problem (12) into vector form

⟨M,X⟩+ 1

β
H(M) = mTx− 1

β

∑
mi ln(mi), (38)

where m = vecM . Since
∑n2

i mi = n, then (12) is equiv-
alent to the well studied problem [4]

sβx = argmin
m

mT (−x) +
1

β

∑
i

mi(ln(mi)− 1). (39)

Let Ṡβ
X be derivative of Sβ

X with respect to β, according
to the proof of [4, Proposition 5.1], Ṡβ

X converges towards
zero exponentially i.e., there exist a c0 > 0 and µ > 0 such
that

|(Ṡβ
X)ij | ≤ c0e

−µβ .

According to the fundamental theory of Calculus,

|(S∞
X )ij − (Sβ

X)ij | = |
∫ ∞

β

(Ṡτ
X)ijdτ | ≤

∫ ∞

β

|(Ṡτ
X)ij |dτ

≤ c0
µ
(e(−µβ)).

(40)
Similarly, we have

|(Sβ
X)ij − (Sβ+∆β

X )ij | = |
∫ β+∆β

β

(Ṡτ
X)ijdτ |

≤ c0
µ
(e(−µβ) − e(−µ(β+∆β))).

(41)
The rest of the proof for the two propositions follows easily
from this.

C. Proof of Proposition 3

Proposition 3 Hadamard-Equipped Sinkhorn
Let X ∈ Rn×n

+ , then

Psk(X) = X ◦ SK(X) = X ◦ (rT ⊗ c) (42)

where SK(X) ∈ Rn×n is unique, r and c ∈ Rn
+ are bal-

ancing vectors so that D(r)XD(c) is a doubly stochastic
matrix.

Proof
Psk(X) = D(r)XD(c)

= X ◦ (rT ⊗ c)︸ ︷︷ ︸
SK(X)

. (43)



D. Proofs of Lemma 1, Lemma 2, and Lemma
3

Lemma 1 Let X ∈ Rn×n
+ , u and v ∈ Rn

+, then

Psk(X) = Psk(X ◦ (uT ⊗ v)). (44)

Proof Let Y = X ◦ (uT ⊗ v), we have

Psk(Y ) = Y ◦ (rTY ⊗ cY ). (45)

Then

Psk(X ◦ (uT ⊗ v)) = X ◦ (uT ⊗ v) ◦ (rTY ⊗ cY )

= X ◦ ((u ◦ rY︸ ︷︷ ︸
r1

)T ⊗ (v ◦ cY︸ ︷︷ ︸
c1

))

= X ◦ (rT1 ⊗ c1)

= Psk(X).

(46)

Since X◦(rT1 ⊗c1) is a doubly stochastic matrix, rT1 ⊗c1 =
SK(X) according to the Proposition 3.

Lemma 2 Sinkhorn-Hadamard product
Let X1, X2 ∈ Rn×n

+ , then Psk(X1 ◦ X2) =
Psk(Psk(X1) ◦X2).

Proof According to Lemma 1, the right-hand side is

Psk(
︷ ︸︸ ︷
Psk(X1) ◦X2) = Psk(

︷ ︸︸ ︷
X1 ◦ SK(X1) ◦X2) (47)

= Psk(X1 ◦X2), (48)

which proves this Lemma.

Lemma 3 Sinkhorn-Hadamard power
Let X1, X2 ∈ Rn×n

+ , then Psk(X
◦(ab)) =

Psk(Psk(X
◦a)◦b), where a and b are two constants not

equal to zero.

Proof According to Lemma 1, the right-hand side is

Psk(Psk(X
◦a)◦b) = Psk((X

◦a ◦ SK(X◦a))◦b) (49)

= Psk(X
◦(ab) ◦ (SK(X◦a))◦b) (50)

= Psk(X
◦(ab)) (51)

which completes the proof.

E. Relation with the proximal point method
In this subsection, we shall demonstrate the equivalence and
difference between the adaptive softassign and the proximal
point method proposed by [40]. The linear convergence rate
of the adaptive softassign methods can be inferred from the
convergence of the proximal point method. While the dif-
ference brings computational efficiency.

Proposition 4 The softassign transition (25) can solve

Sβ2

X = arg max
s∈Σn×n

⟨X,S⟩ − (β2 − β1)Dh

(
S, Sβ1

X

)
, (52)

Dh(x,y) =

n∑
i=1

xi log
xi

yi
−

n∑
i=1

xi +

n∑
i=1

yi. (53)

Proof The solution of (52) in the proximal point method is

Psk(S
β1

X ◦ exp((β2 − β1)X)). (54)

According to the Hadamard-Equipped Sinkhorn Theorem,
we have

Sβ1

X = exp(β1X) ◦ SK(exp(β1X)). (55)

Then

Psk(S
β1

X ◦ exp((β2 − β1)X))

= Psk(exp(β1X) ◦ exp((β2 − β1)X))

= Psk(exp(β2X))

= Sβ2

X ,

(56)

which is equivalent to the softassign transition (25).

According to Proposition 4, we can rewrite the itera-
tive formula of the adaptive softassign as a proximal point
method in [40]

S
(k)
X = arg max

s∈Σn×n

⟨X,S⟩ − (∆β)Dh

(
S, S

(k−1)
X

)
, (57)

where Dh(·), the Bregman divergence, is a regularization
term to define the proximal operator. This indicates adap-
tive softassign is a variant of the proximal point method for
problem (12) and enjoys a linear convergence rate [40].

Let us discuss the difference between adaptive softassign
and the proximal point method. Adaptive softassign aims at
obtaining a sub-optimal solution and βϵ with a given error
bound, where βϵ can be used as a good initial β0 in the next
adaptive softassign in the whole graph matching process.
While the proximal point method aims to find the exact so-
lution, its efficiency is secondary and the change of β is
implicit. As to the computation aspect, the proximal point
method solves (52) according to

Sβ2

X = Psk(S
β1

X ◦ exp((β2 − β1)X)). (58)

Softassign transition only adapts a power operation and
does not need the X , which indicates the change of β more
clearly. One can track and analyze the explicit change of β
easily.
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Figure 7. Graphs from real images matching. The yellow lines represent the correspondence between key points of the pictures.

F. Baselines and visualization of experiments
Visualization of the matching results is shown in Figure 7.
Baselines:
• DSPFP [23] is a fast doubly stochastic projected fixed-

point method with an alternating projection.
• GA [8] can be considered a softassign-based projected

fixed-point method with an outer annealing process.
• AIPFP [19, 23] is an integer projected fixed point method

with a fast greedy integer projection.
• SCG [32] is a constrained gradient method with a dy-

namic softassign invariant to the nodes’ number.
• GWL [42] measures the distance between two graphs by

Gromov-Wasserstein discrepancy and matches graphs by
optimal transport.

• S-GWL [41] is a scalable variant of GWL. It divides
matching graphs into small graphs to match.

• MAGNA++ [36] is a global network alignment method
for protein-protein interaction network matching, which
focuses on node and edge conservation.

• GRASP [11] aligns nodes based on functions derived
from Laplacian matrix eigenvectors.
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