
Are Conventional SNNs Really Efficient?
A Perspective from Network Quantization

Supplementary Material

A. Experimental Details

A.1. Static Datasets

In order to verify the efficiency of QSNN, we performed a
series of comprehensive evaluations on several datasets. We
describe these datasets in more detail below.

ImageNet [5] With over a million categorized images
spread across 1, 000 diverse categories, ImageNet stands as
a colossal and pivotal dataset. The images in ImageNet,
which cover a wide spectrum from tangible items to abstract
notions, demonstrate considerable variations in attributes
like scale, pose, and illumination. Consequently, it provides
a rigorous testing ground for diverse computer vision tasks
and serves as an industry-standard benchmark.

CIFAR [14] The CIFAR datasets, particularly CIFAR10
and CIFAR100, are quintessential datasets in the field of
machine learning, commonly employed for assessing im-
age classification algorithms. CIFAR10 comprises 60, 000
32 × 32 color images, evenly distributed across 10 distinct
categories, with each category containing 6, 000 images. In
contrast, CIFAR100 maintains the same overall number of
images and resolution but is divided into 100 categories,
each containing 600 images, offering a finer granularity of
classification.

A.2. Neuromorphic Datasets

Neuromorphic datasets provide a benchmark for assessing
algorithms tailored to neuromorphic hardware, which often
deal with spiking neural networks (SNNs) and event-driven
data. Such datasets capture real-world, dynamic visual in-
formation in a format suitable for SNNs, emphasizing the
importance of time and asynchronous events in information
processing.

CIFAR10-DVS [16] The CIFAR10-DVS dataset is a
neuromorphic version of the popular CIFAR10 dataset. In-
stead of static images, CIFAR10-DVS provides sequences
of events generated by a Dynamic Vision Sensor (DVS), a
type of neuromorphic camera that only captures pixel-level
brightness changes, making it more power-efficient and bet-
ter suited for real-time applications.

DVS-Gesture [1] The DVS-Gesture dataset is a bench-
mark collection in the field of neuromorphic vision, de-
signed for the task of gesture recognition. The DVS-
Gesture dataset includes a variety of hand gestures from
multiple subjects, performed under different lighting con-
ditions, and from various angles, challenging the robustness
of spiking neural network (SNN) models in recognizing and

classifying dynamic patterns.
N-Caltech101 [27] The N-Caltech101 dataset is a neu-

romorphic version of the well-known Caltech101 dataset,
which has been converted using a DVS camera to create
event-based vision data. Unlike the original dataset with
static images, N-Caltech101 provides a sequence of events
as each image is presented to the sensor, capturing the tem-
poral aspect of visual perception. This dataset contains the
same categories as the original Caltech101, encompassing
a wide range of objects such as animals, vehicles, and ev-
eryday items, thus providing a comprehensive challenge for
testing the effectiveness of SNNs in processing and classi-
fying neuromorphic vision data.

A.3. Experimental Settings

Following the framework defined by Zhou et al. [43] for
consistency and comparability, we set the input dimensions
for the ImageNet dataset to 224×224. For other static image
datasets, their native image dimensions were retained. The
neural morphology datasets underwent a resizing process,
adjusting the event streams to 48×48 to streamline compu-
tational demands. We used a batch size of 128 and selected
the AdamW optimizer [23]. Training involved 310 epochs
for the ImageNet dataset, whereas for other datasets, 400
epochs were deemed sufficient. We initialized our models
with a learning rate of 0.0005.

Our experiments spanned various neural network ar-
chitectures, prominently SEW-ResNet [7] and Spik-
Former [43]. Although the architectural blueprints of our
models mirrored the original specifications, we took the lib-
erty of introducing modifications to accentuate their event-
driven nature. This involved imposing bit width restrictions
on the output of SEW-ResNet’s blocks and SpikFormer’s at-
tention matrices. Our thorough evaluations then centered on
the performances of S-ACE and NS-ACE for these models
across our selected datasets.

A.4. Additional Evaluation

In Tab. 5, various methods and configurations show-
case their performance on both CIFAR10 and CIFAR100.
Burst[33], although demonstrating impressive performance
across different configurations, retains a relatively large
number of parameters due to its limited consideration
of pulse patterns and its lack of quantization for model
weights. Building upon Spikiformer [43], our further ex-
periments reveal that models with multiple pulse patterns
can better utilize the bit budget. When combined with



weight quantization, we managed to achieve an accuracy
of 96.84% on CIFAR10 and 80.13% on CIFAR100 with
just 1/4 of the original model parameters and 1/5 of the
S-ACE. These results indicate a performance improvement
of 1.33% and 1.92% respectively over the non-optimized
methods.

From the neuromorphic results in Tab. 3, it’s evident that
as we modify the allocation between the spike patterns and
simulation steps (S and T), there are significant performance
trade-offs. The most notable decline in performance is ob-
served for the DVSC10 dataset when adjusting the S/T ra-
tio from 1/16 to 8/2, indicating a substantial sensitivity to
the bit allocation strategy. This is further accentuated in
the 1/16/1 configuration, leading to a staggering decrease of
44% in accuracy. However, the impact of weight bit-width
on model performance is not particularly pronounced. This
might be attributed to the relatively small dataset size of the
neural morphology dataset, where weight bit-width may not
be the predominant factor influencing model performance.

Building upon our previous discussions and the observed
performance on the CIFAR dataset, these results further un-
derscore the intricacy of employing spiking neural networks
on the neural morphology dataset. The judicious selection
and allocation of bits are of paramount importance when
dealing with neural morphology data characterized by tem-
poral dynamics.

B. Hardware Implementation

CPU DDR Memory

Act/Spike
Bank 0

Act/Spike

Bank 1

… …

Act/Spike

Bank N

DMA
EngineWeight WideMem

Neuron
Dynamic

Units

Neuron
Dynamic

Units

Output Buffer

Partial Sum
Aggregation

Units

Partial Sum
Aggregation

Units

Reg
Space

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PS

PL

Figure 7. System block design of our hardware accelerator.

To assess the hardware efficacy of various bit allocation
strategies, we developed a flexible FPGA accelerator pro-
totype that has the flexibility to support different time steps
and activation bit widths. Drawing inspiration from estab-
lished advancements in bit-serial accelerator, the accelera-
tor first breaks down multi-bit spikes across multiple time
steps into several iterations of general matrix multiplication

between binary inputs and multi-bit weights. These iter-
ations’ resulting partial sum matrices are then aggregated
and transmitted to the neurodynamic units to generate the
final output. In this way, the hardware efficiency of models
with distinct bit allocation strategies can be assessed using
the same hardware backend to ensure a fair and accurate
comparison. Notably, bit-serial accelerators are prevalent
in deep learning accelerator research due to their ability to
provide a finer computation granularity, offering a more ex-
pansive optimization space. This includes the implementa-
tion of mixed bit-width quantization across different layers,
enabling more extensive optimization opportunities.

Figure 8. Place and route of the accelerator on xck26 FPGA de-
vice.

The system architecture of the accelerator is shown in
Fig. 7. This accelerator is implemented on the Xilinx Zynq
Ultrascale series FPGA platform, which features embedded
host CPUs on the Processing System (PS) side. The PS
manages task scheduling, while the Programmable Logic
(PL) side handles heavy computational workloads within
the FPGA fabric. The system diagram is depicted below.
The DMA engine is responsible for input/output activation
and weight data transfer between the PL logic and external
DDR memory. To optimize data reuse and alleviate DDR
bandwidth constraints, on-chip weight and input activation
buffers are instantiated. Input buffers are split into several
banks for a flexible data layout arrangement. A systolic ar-
ray, consisting of Processing Elements (PEs) arranged in a



Table 5. Additional evaluation on CIFAR10/100. † represent results reproduced with the same experimental setup.

Methods Architecture
Assignment
bw / bs / T

Params
(M)

S-ACE
(G)

Accuracy
CIFAR10

Accuracy
CIFAR100

PLIF [8] CIFARNet-Fang 16 / 1 / 8 0.58 3.57 93.50 74.36†

Diet-SNN [29] ResNet-20 16 / 1 / 5 0.27 3.32 92.54 64.07†

tdBN [41] ResNet-19 16 / 1 / 4 12.63 139 92.92 70.86
TET [6] ResNet-19 16 / 1 / 4 12.63 139 94.44 74.47

Burst [33]

ResNet-19 16 / 2 / 1 12.63 69.6 95.94 77.86
ResNet-19 16 / 2 / 2 12.63 139 96.01 78.04
ResNet-19 16 / 2 / 4 12.63 278 96.21 78.12
ResNet-19 16 / 2 / 6 12.63 417 96.32 78.31

Spikformer [43]
Spikformer-4-256 16 / 1 / 4 4.15 26.28 93.94 75.96
Spikformer-2-384 16 / 1 / 4 4.15 44.50 94.80 76.95
Spikformer-4-384 16 / 1 / 4 4.15 59.10 95.51 78.21

Quantized
Spikformer

Spikformer-4-384 1 / 1 / 1 0.26 0.77 90.48 70.11
Spikformer-4-384 1 / 4 / 1 0.26 3.08 95.00 76.90
Spikformer-4-384 1 / 2 / 2 0.52 3.08 94.43 75.91
Spikformer-4-384 1 / 1 / 4 0.26 3.69 93.91 74.13
Spikformer-4-384 2 / 2 / 1 0.52 3.08 95.41 76.67
Spikformer-4-384 2 / 1 / 2 0.52 3.09 93.56 75.91
Spikformer-4-384 4 / 1 / 1 1.04 3.09 94.51 74.61
Spikformer-4-384 4 / 4 / 1 1.04 12.32 96.84 80.13
Spikformer-4-384 4 / 2 / 2 1.04 12.33 96.50 80.71
Spikformer-4-384 4 / 1 / 4 1.04 14.77 95.94 78.77
Spikformer-4-384 8 / 1 / 2 2.08 12.35 95.55 77.72
Spikformer-4-384 8 / 2 / 1 2.08 12.33 96.29 80.00

two-dimensional grid, executes arithmetic-intensive matrix
multiplications using binary inputs and multi-bit weights.
Each PE comprises a multiplexer and an accumulator; the
binary input controls the multiplexer to determine whether
the accumulator adds the current weight. A central con-
troller is designed to fetch the necessary inputs and weight
data for the systolic array’s operations. Following the ma-
trix multiplications, a post-processing unit aggregates par-
tial sums from each binary slice of inputs and generates out-
put spikes through the neurodynamic units. Subsequently,
the output data is organized in the output buffer and trans-
ferred back to the external DDR memory to serve as the
input for the next layer.

The accelerator decomposes the multi-bit activation (or
spike) tensor into binary slices across multiple time steps.
The bit-width of the activations (or spikes) and the quantity
of time steps determine the number of binary slices. Hence,
it is unsurprising that SNNs and QANNs sharing the same
bit budget will result in an identical computational workload
using such a hardware backend.

The out-of-context Place and Route implementation re-
sults are depicted in Fig. 8. In the illustration, the high-
lighted bright yellow area signifies the systolic array. In

Table 6. Utilization of different resources on the xck26 FPGA
device.

Resource Used Total
Look Up Table 23298 117120

Flip Flops 44084 234240
DSP48E2 512 1248

Block Ram 89.5 144
Ultra Ram 8 64

contrast, the highlighted blue area encompasses the post-
processing units responsible for the partial sum aggrega-
tion process and the neurodynamic process. The pink line
demarcates the utilized block RAM for the weight buffer,
whereas the orange area indicates the split input buffer
banks. The dark yellow rectangle on the left represents the
CPUs on the PS side of the Zynq Ultrascale device. The
comprehensive resource utilization is detailed in Tab. 6.


	. Introduction
	. Related Work
	. Method
	. T-step SNNs and T-bit Quantized ANNs
	. A Generalized Framework towards QSNNs

	. Experiments
	. Evaluation on Static Datasets
	. Evaluation on Neuromorphic Datasets
	. Bit Budget Allocation
	. Hardware Implementation
	. Visualization of Sparsity in SNNs

	. Conclusion
	. Experimental Details
	. Static Datasets
	. Neuromorphic Datasets
	. Experimental Settings
	. Additional Evaluation

	. Hardware Implementation

