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1. Implementation Details

Mask proposal generator. We generate mask proposals on
each frame by applying SAM (ViT-H) [6] on a 32×32 point
grid, resulting in 3,072 mask proposals. We apply Non-
Maximum Suppression (NMS) with a mask IoU threshold
of 0.9 to remove redundant proposals. If more than 1k
mask proposals remain after NMS filtering, we keep the top
1k proposals based on their confidence scores predicted by
SAM. During training, we randomly sample 200 mask pro-
posals for each image. We use a 2D Gaussian distribution to
model the center positions of all mask proposals, and sam-
ple the proposals based on the probability distribution. We
empirically observe that this strategy performs slightly bet-
ter than uniform sampling, as this distribution gives prefer-
ence to the mask proposals near the center, which are more
likely to represent relevant objects in egocentric videos.

Attention masking in Region Encoder. The input resolu-
tion of all models is 224×224. For each mask proposal, we
first rescale it to the same resolution of the feature maps,
e.g., 14×14 for ViT-B/16 model, and then apply attention
masking to ensure that the CLS token exclusively attends to
the masked region.

Noun phrase parser. To get the object phrases on Ego4D,
we use spaCy [1] to extract all noun phrases from the narra-
tions. Subsequently, we filter out noun phrases that describe
the camera wearer and other people (e.g., “#C”, “man X”,
“woman Y”, “person”) or involve hand (e.g., “left hand”,
“right hand”, “hands”) to get the object phrases for our
grounding process.

Training details. We train the model using AdamW op-
timizer [11] with an initial learning rate of 2e−5, decayed
with a cosine learning schedule. We freeze the CLIP im-
age encoder and text encoder, and optimize the MLP layers
in Region Encoder. The total number of parameters in our
model is 150M and we only optimize 0.5% of them (787k).
The batch size is 32, and the learnable temperature param-
eter τ is initialized with 0.07. For the Temporal Adaptive
Pooling function, we set α0 as 0.1 and β as 0.999. To accel-
erate training, we store mask proposals generated by SAM,
and extract context-aware region embeddings for all mask
proposals. During training, we load these pre-extracted re-
gion embeddings and optimize the MLP in region encoder.
Training the model on eight Tesla V100 GPUs takes ap-
proximately 6 hours.

Inference time. Inference takes roughly 2.24 seconds per
frame on a NVIDIA V100 GPU, with a significant portion
of time (2.1s) being consumed by SAM mask generation.

Narration:
The person uses a [wooden spoon]<5> to 
stir [pasta]<2> in a [pan]<3> on the 
[stovetop]<6>.

Figure 1. An example of our annotated narration on the VISOR-
NVOS benchmark. The annotators are instructed to write a de-
tailed narration with [referred object] followed by ⟨object ID⟩.

This is a common limitation in most object segmentation
methods [9, 21, 22] that rely on mask proposals. The infer-
ence time can be significantly reduced through the adoption
of more efficient mask proposal generators, such as Fast-
SAM [24] and EfficientSAM [20]. For example, FastSAM
can reduce the inference time to 0.39s. However, it leads to
a lower upper bound of J&F from 73.0% to 66.0%, illus-
trating the inherent trade-off between speed and accuracy.

Open-Vocabulary segmentation baselines. We use the of-
ficial GitHub repositories to implement ODISE1 [21] and
GroundedSAM2 [6, 10]. To adapt the open-vocabulary seg-
mentation baselines to NVOS tasks, we do not pre-define a
taxonomy of all object classes. Instead, we use the list of
object phrases in the narration as the potential class names
for each video clip to output segmentation masks of each
object phrase.

2. VISOR-NVOS Benchmark Details

Annotation setup. The VISOR dataset [2] provides seg-
mentation masks for annotated objects but lacks associ-
ated narrations, making it unsuitable for direct evaluation
of NVOS methods. To address this limitation, we first ex-
tracted associated narrations from EPIC-Kitchens based on
the timestamp of each frame. However, EPIC-Kitchens nar-
rations are very short, typically consisting of only one verb
and one noun (e.g.. “stir pasta”, “pour salt”, “set down
cutlery”). These short-form narrations lack the richness re-
quired for NVOS task and fail to measure a method’s ca-
pability to ground multiple objects. To mitigate this, we
extended VISOR to VISOR-NVOS by collecting detailed,
object-based narrations, as illustrated in Figure 1. The an-
notators are instructed to watch a 2-second video clip with
the frame with annotated segmentation masks as the mid-

1https://github.com/NVlabs/ODISE
2https://github.com/IDEA-Research/Grounded-Segment-Anything

https://github.com/NVlabs/ODISE
https://github.com/IDEA-Research/Grounded-Segment-Anything
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Figure 2. Dataset statistics for EPIC-Kitchens narrations and our annotated VISOR-NVOS narrations. Left: Histogram of the number of
groundable objects per narration. Right: Histogram of the number of words per narration.

dle frame. Provided with a list of objects of interest and the
original short EPIC-Kitchens narration, their task is to com-
pose a comprehensive narration covering as many objects
related to the user’s activity in the video as possible, while
disregarding irrelevant objects (e.g., “pesto sauce jar” in the
provided example). We ask the annotators to write the nar-
ration in a predefined format, i.e., [referred object] followed
by ⟨object ID⟩, as shown in Figure 1. After annotation, we
parse these narrations to get the clean narration, and a list
of object phrases as well as their associated object IDs.

Dataset statistics. As VISOR [2] does not release anno-
tations for the test set, we use videos from VISOR valida-
tion set as the test set for VISOR-NVOS. Additionally, we
annotate a subset of VISOR training videos to create our
validation set. We have 7,561 video clips in the validation
set and 7,051 video clips in the test set. Each video clip
is annotated with one detailed narration. We use the vali-
dation set to select our best-performing model, and report
the performance on the test set. In Figure 2, we present a
histogram illustrating the number of groundable objects and
the number of words per narration for narrations from Epic-
Kitchens and our collected narrations on VISOR-NVOS test
set. Notably, the majority of narrations from EPIC-Kitchens
are very short, ranging from one to five words, and includ-
ing only one groundable object. Particularly, 1,184 EPIC-
Kitchens narrations have no groundable object. In contrast,
our annotated narrations on VISOR-NVOS are longer and
contain multiple groundable objects, making it more suit-
able for NVOS evaluation.

Evaluation setup. VISOR contains both sparse anno-
tation (manually segmented masks) and dense annotation
(dense masks obtained automatically through interpola-
tion). Following the established setup for semi-supervised
VOS [3], we evaluate only on sparsely annotated segmen-
tation masks. The dense masks remain a valuable resource
for evaluating the model’s tracking capability and consis-

tency across multiple consecutive frames, which we leave
as a future direction. We pre-train our model on Ego4D,
and evaluate our model on VISOR-NVOS benchmark with-
out fine-tuning. It is important to note that this benchmark
evaluates the zero-shot transfer capability of our approach,
i.e., our model has not been trained on any videos from
EPIC-Kitchens or any narrations from VISOR-VNOS. In
addition, while we use these annotated narrations to bench-
mark our NVOS task, our annotations can be used for other
related tasks, such as video captioning and video-text re-
trieval.
Comparison with other datasets. We compare our
VISOR-NVOS benchmark with other related datasets in
Table 1. Three key characteristics set our VISOR-NVOS
benchmark apart from previous datasets: 1) it focuses on
egocentric videos rather than third-person view videos, 2)
annotations are provided in the form of segmentation masks
instead of bounding boxes, and 3) each video is associated
with a narration that describes the context and contains mul-
tiple groundable objects. While our benchmark shares a
similar scale with UVO-VNG [18], it features more ground-
able objects in each narration and focuses on egocentric
videos rather than third-person view videos. In comparison
to YouCook2-BB [26], a previous dataset in video object
grounding, our dataset excels in several aspects: it includes
a larger number of video narrations, a greater variety of ob-
jects, finer-grained segmentation masks instead of bounding
boxes, and a distinctive emphasis on egocentric videos.

3. Details on Other Evaluation Datasets

VOST. We evaluate our model on the validation set of
VOST. VOST contains videos from both EPIC-Kitchens
and Ego4D, and we remove the videos existing in our train-
ing set from the evaluation set. In total, we have segmen-
tation masks for 7,820 frames from 70 videos, including 50
cooking-related videos and 20 non-cooking videos. Each



Dataset Source Task Type # Vid. # Narr. # Obj. (per narr.) ego

RefEgo [8] Ego4D [5] Referring Expression Loc. bbox 12,038 12,038 12,038 (1) Yes
ANet-Entities [28] ActivityNet [7] Video Object Localization bbox 14.9k 51.8k 157.8k (3.05) No
YouCook2-BB [26] YouCook2 [27] Video Object Grounding bbox 647 4,325 9,766 (2.26) No

EgoHOS [23] multiple † Hand Object Segmentation mask 11,243 N/A 17,568 (N/A) Yes
OVIS-VNG [18] OVIS [12] Video Narrative Grounding mask 505 1,554 2,407 (1.55) No
UVO-VNG [18] UVO [19] Video Narrative Grounding mask 7,587 22,749 43,058 (1.89) Mixed

VOST ∗ [17] EPIC-Kitchens+Ego4D Narration-based VOS mask 70 7,820 7,820 (1) Yes
VISOR-NVOS EPIC-Kitchens [2] Narration-based VOS mask 14,612 14,612 37,170 (2.54) Yes

Table 1. Comparison of VISOR-NVOS with existing related datasets. ∗ The subset of VOST videos used as our evaluation benchmark. †

EgoHOS contains videos sourced from Ego4D [5], EPIC-Kitchens [2], THU-READ [16], and self-collected GoPro videos.

frame is annotated with the segmentation masks of one or
multiple object instances of the same object class. The av-
erage number of object instances per frame is 1.54.
YouCook2-BB. We follow the setup in NAFAE [13] to con-
duct bounding box evaluation and the setup in CoMMa [15]
to conduct point prediction evaluation. CoMMa predicts
an attention map for each object, and if the highest atten-
tion similarity score lies in the ground-truth bounding box,
the result counts as a “hit” and otherwise it counts as as a
“miss”. The point accuracy is calculated as a ratio between
hits to the total number of predictions #hits

#hits+#misses .

4. Additional Experiments
4.1. Ablation Studies on Dual Encoder

Context-Aware Region Encoder. We investigate the im-
pact of our Context-Aware Region Encoder in Table 2a.
We report the performance of the models in two scenarios:
without learning (i.e., we replace the MLP of our region
encoder with the identity mapping), and with learning on
Ego4D using our proposed Global-Local Contrastive Learn-
ing objectives. We first replace the CLIP image encoder
with a same-sized ViT model pre-trained on ImageNet-21k
[4] to assess the advantages derived from extensive vision-
language pre-training. Directly employing the ImageNet
pre-trained model for grounding, without additional learn-
ing, results in poor performance due to a misalignment be-
tween the region and phrase embeddings. After learning on
Ego4D, we observe a significant improvement in J&F to
21.5%, which demonstrates that our proposed framework is
able to learn an improved alignment for region-phrase pairs
even without a reasonable initialization. However, a signif-
icant performance gap of 16.6% persists when compared to
ROSA, showing that our proposed Context-Aware Region
Encoder is able to effectively leverage the advantages of
large-scale vision-language pre-training from CLIP. In ad-
dition, we compare our Region Encoder with Crop+Mask
and MaskCLIP [25]. Our Region Encoder is not only more
efficient than cropping and masking, but also improves

Region Encoder w/o learning w/ learning

ImageNet Pretrained 3.4 21.5
Crop+Mask 24.3 -
MaskCLIP [25] 28.1 36.9
ROSA 28.1 38.1

(a) Performance of J&F of various region encoders without and
with learning on Ego4D.

Phrase Encoder All Exhaust. Inexhaust.

narration-aware 32.5 34.7 17.0
localized 37.0 39.3 19.4
average 38.1 40.5 21.5

(b) Effect of context in phrase encoder.

Phrase Encoder J F J&F

no MLP 34.9 41.2 38.1
add 1 layer 28.3 34.9 31.6
add 2 layers 27.4 33.8 30.6

(c) Effect of MLP in phrase encoder.

Table 2. Ablations on CLIP-based Dual Encoder on VISOR-
NVOS test split.

the J&F by 3.8%, showing the advantages of using con-
texts for grounding task. Due to the computation cost of
Crop+Mask, we are unable to train the model on Ego4D. In
comparison to MaskCLIP, ROSA exhibits comparable per-
formance without learning, and outperforms MaskCLIP by
1.2% after learning using our proposed objectives.

How does the context in phrase encoder help ground-
ing? The objects on VISOR are annotated with an “ex-
haustive” label, indicating whether the object has been ex-
haustively annotated, i.e., there are no more instances of
the same class in the view. We evaluate the performance
of the narration-aware and localized phrase embeddings for
exhaustive and inexhaustive objects in Table 2b. Merely
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Figure 3. Performance w.r.t. the number of MLP layers in Region
Encoder (VISOR-NVOS test split).

using narration-aware phrase embeddings leads to subopti-
mal performance, as the contextualized embeddings from
CLIP’s text encoder do not well emphasize the local in-
formation. However, compared with only using localized
phrase embeddings, the combination of narration-aware and
localized embeddings demonstrates an overall improvement
in J&F by 1.1%. In particular, adding narration-aware
phrase embeddings leads to 2.1% improvement for inex-
haustive objects, which shows the importance of context for
inexhaustive objects.

MLP in Region Encoder and Phrase Encoder. Figure
3 illustrates the performance variations as we change the
number of MLP layers in Region Encoder. The model
achieves the best performance with three layers. We also
explored adding MLP in Phrase Encoder, which worsens
the performance, as detailed in Table 2c. We postulate that
freezing the CLIP text encoder is beneficial in preserving
the model’s generalization capability.

What is the effect of ViT model size? In Table 3, we report
the performance when we use CLIP models of various sizes
before and after learning on Ego4D. Our learning approach
is able to achieve improvement in all cases. We notice a
significant performance gain from ViT-B/32 to ViT-B/16,
which implies the importance of higher-resolution maps for
achieving fine-grained egocentric video understanding.

4.2. Additional Ablations on Global-Local Con-
trastive Learning

What is the effect of RPA loss weight? Figure 4 shows
the performance of ROSA under varying weights for the
proposed region-phrase alignment loss on VISOR-NVOS
and VOST. When the weight λ is 0, our model relies solely
on global video-narration contrastive loss to learn region-
phrase alignments. When λ is larger than 0, we observe
a consistent improvement in all metrics, showing the ef-

Model Size
VISOR-NVOS VOST

J F J&F Junion Jins

w/o learning
ViT-B/32 17.9 25.1 21.5 10.6 11.9
ViT-B/16 24.8 31.3 28.1 16.3 19.7
ViT-L/14 26.6 32.9 29.8 17.8 20.6

w/ learning
ViT-B/32 22.6 30.0 26.3 11.4 12.8
ViT-B/16 34.9 41.2 38.1 22.2 25.4
ViT-L/14 38.7 46.0 42.4 23.2 26.7

Table 3. Performance of different model sizes.
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Figure 4. Performance w.r.t. different weights for region-phrase
alignment loss.

fectiveness of the proposed local region-phrase contrastive
loss. The model performs best when λ is 0.5.

How does the model perform on unseen/rare object
phrases? We categorize the object phrases based on their
occurrences in the training set and evaluate their perfor-
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Method J F J&F

w/o learning 24.8 31.3 28.1
fix alignments 29.0 35.7 32.4
update alignments (ours) 34.9 41.2 38.1

Table 4. Comparison on using fixed alignments and updated align-
ments during training.

mance in Figure 5. The figure illustrates the performance
gain achieved through our Global-Local Contrastive Learn-
ing framework with respect to the phrase occurrences in
the training set. For phrases comprising multiple words,
we consider one occurrence whenever any word from the
phrase appears in the narration. Overall, our contrastive
learning exhibits greater improvements for object phrases
with higher occurrences in the training set. There is a note-
worthy 2.7% improvement for phrases that never occur in
the training set, showcasing the model’s ability to gener-
alize to unseen data. Moreover, the model demonstrates a
substantial 4.3% improvement for phrases with very few oc-
currences (1 to 20) in the training set, highlighting the data
efficiency of our learning approach.

How does learning improve region-phrase alignments?
In our implementation, region-phrase alignments are deter-
mined based on the similarity between the learned region
embeddings and phrase embeddings. Additionally, we in-
vestigate a scenario where the alignments are fixed using
the initial region embeddings (without MLP) throughout the
training process. In other words, we generate pseudo labels
using the initial alignments and fix them during training. As
outlined in Table 4, using fixed alignments also improves
J&F by 4.3% after learning. However, dynamically up-

Method All Cooking Non-Cooking

SAM+CLIP 16.5|19.2 17.9|21.7 15.0|15.3
ROSA 22.2|25.4 24.5|29.6 20.0|20.0

Table 5. Comparison between SAM+CLIP and ROSA on VOST
in cooking videos and non-cooking videos (Junion|Jins).

dating alignments surpasses it by 5.7%.

4.3. Other Analysis

How does the model generalize to non-cooking videos?
While both our training set and VISOR-NVOS focus on
cooking domain, the VOST dataset contains both cooking-
related and non-cooking (e.g., “mold clay”, “cut paper”)
videos. We use this dataset to evaluate the domain gener-
alization capability of our model in Table 5. Despite being
pre-trained on cooking-related videos, our model improves
the performance of SAM+CLIP in both cooking and non-
cooking videos. The improvement of 5.0% in Junion and
4.7% in Jins in non-cooking videos, while smaller than that
in cooking videos, underscores the generality of our model
across varied video contexts.

How does the model perform on different objects? The
detailed performance breakdown for each object phrase is
illustrated in Figure 6. To ensure statistical significance and
reduce the impact of randomness, we exclusively present re-
sults for object phrases occurring more than 50 times in the
test set. The model performs well on objects like “chopping
board”, “bowl”, and “table”. Interestingly, it struggles with
objects related to “tap water”, “tap”, and “water”, which can
be ambiguous or transparent. Additionally, it encounters
challenges with objects that frequently appear in multiple
instances within a scene, such as “sponge” and “fork”.

5. Limitations and Ethical Concerns
A limitation of our framework is that we perform infer-
ence on each frame separately, neglecting temporal infor-
mation. Integrating temporal context into our model has the
potential to enhance performance and alleviate ambiguities,
which is a promising direction for future work. Further-
more, we focused our training and evaluation on the cook-
ing domain. While we show that our weakly-supervised
training also improves grounding on non-cooking videos
in Table 5, a performance gap still exists between the two
domains. Additionally, our model’s performance is lim-
ited by the quality of mask proposals generated by SAM.
While there is room for improvement between the best per-
formance (42.7%) and the upper bound of SAM propos-
als (73.0%), any future improvements will be constrained
by the upper bound without further advancements on mask
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Figure 6. Breakdown performance per object phrase on VISOR-NVOS test split. To ensure statistical significance and reduce the impact
of randomness, we exclusively present results for object phrases occurring more than 50 times in the test set.

proposal generation methods. Regarding ethical concerns,
we use the videos and narrations from the public egocen-
tric video dataset Ego4D [14], which may have gender, age,
geographical and cultural bias.
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