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7. Theorectical proof of Eq. (7)

Directly computing the stable rank of the weight matrix
of an entire NN is difficult. Therefore, we propose to use
noise sensitivity as an approximation of the stable rank for

estimating the model complexity. As shown by Arora et al.

[3], there is a strong correlation between noise sensitivity
and stable rank of a model. Concretely, low noise sensitivity
corresponds to a weight matrix having some large singular
values, i.e. having a lower stable rank. Given a Gaussian
noise 7 with noise intensity ¢, the noise sensitivity of model
M with weight w is defined as:

Mt el w) — M(xw)?
VML) = E, 1M (@, w2

Given n € N(0,¢?), we have the following guarantee:
srank(w) < ¢ (M, x),. Therefore, noise sensitivity is
the upper bound of stable rank [3], i.e. the model complexity
can be estimated by noise sensitivity. The detailed proof is
given below.

For the liner layer, we have:

y= Wz, (10)
and
y' =Wz +nlz|). (11

Because we assume that 7 is sub-Gaussian with ¢, we
have:

E[m'] = ¢*I. (12)
The noise sensitivity is:

o
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Table 6. Classification results on multiple datasets.

Method Caltech101 CIFAR-100 DTD EuroSAT Flowers102
Baseline 92.9 84.1 74.4 98.8 96.5
BSS 93.0 84.2 74.3 98.8 96.6
BSS+TSRS 93.1 85.0 74.6 98.8 96.8
Method PACM Resisc45 SVHN Foodl101 Pets Average
Baseline 83.8 96.1 96.7 85.1 93.2 90.2
BSS 83.9 96.1 96.8 85.0 93.3 90.2

BSS+TSRS  84.6 96.2 96.8 85.8 93.7 90.5

Assume the model M employs a piecewise-linear activation
function, like ReLU, Then M, as a combination of linear
and piecewise-linear functions, is also a piecewise-linear
mapping [43]. So we have:

srank(w) < O (Y(M,x)y,) . (14)
8. More validation datasets on classification

We summarize the results on other 10 datasets for valida-
tion in Tab. 6. These encompass natural image datasets
(Caltech101, CIFAR-100, DTD, Flowers102, Pets, Food101,
SVHN), remote sensing datasets (Resisc45, EuroSAT), and
the medical dataset PACM, most of which are part of VTAB-
1k [61]. All experiments in Tab. 6 were conducted on
ImageNet-pre-trained ResNet-50 using 100% tuning data
based on the TLIlib open-source library.

9. More results on Detection

We have added an additional validation dataset for the detec-
tion task: DeepLesion dataset [58] (Tab. 7). The experimen-
tal settings for these results align with the segmentation and
detection settings outlined in our main text.

Table 7. Detection results on the DeepLesion dataset.

Method AP AP50 AP75 APS AP]\,] APL

DETR;se 4642 48.16 19.69 41.58 48.11 50.86
DETR;.,.+TSRS 47.34 49.16 20.18 41.95 4882 54.30

10. Detailed formulation of existing fine-tuning
methods

M, wy denote the model and its target weights. Dy =
{(z%,y%)}"s and Dy, = {(=,yi)}™, denote the source



domain data and the target domain data. Denote the empiri-
cal risk and the penalty loss on model complexity by Rep,
Lgm, the structural risk is formularized as:

Rsrm = Remp + LS'I‘?’YI,' (15)

In the fine-tuning scenario, the empirical risk can be divided
into two parts: one is the empirical risk of newly learned
knowledge in the target domain Dy, denoted as L.y, and
the other is the empirical risk of inherited knowledge from
the source domain, denoted as Lycy,p, which is formularized
as:

Remp - Lemp (:Eta Y, wt) + Ltem,p (xta Yt, Wy, ws) ) (16)

pmp Z L

where L(-) denotes the loss function and cross-entropy is a
typical choice. Existing fine-tuning methods aim to reduce
Reonmp and can be unified under the concept of knowledge re-
weighting. We take the classification task as an example, and
the model consists of a feature extractor F' and a classifier
G, with weights w and w, respectively. And A\ denotes the
trade-off weighting parameter.

DELTA. DELTA [33] aligns the outer feature maps of
the fine-tuned model and the pre-trained model, ensuring the
useful semantic information retainment. The optimization
objective of DELTA is formularized as:

(zh,we) ) (17)

Ltemp (-rb Yt, uA}t7 12)5)

(18)
= )\ZZC’ ||F xt,wt) F; (xt,wg)|}2,
=1 j=1
where C; refers to the weight assigned to the 4t channel,

which is computed by the behavioral difference between the
two feature maps, and is the core of knowledge re-weighting
in DELTA:

L(M (x,1b,), y})-

(19)

Co-tuning. Co-tuning [60] first learns a relationship

p (ys|y:) between the source and target categories and then

translates the target domain labels into probability labels on

the source label domain, by which it preserves the knowledge

in the pre-trained task layer G(-,@;). The optimization
objective of Co-tuning is formularized as:

(l‘; wt) aws) y P (ys|yt = y;)) .

Lemp =AY _L(G(F
i=1
(20)

Through the probability label p (ys lye = yz), Co-tuning re-
tains the conducive knowledge in w;.

C; = softmax(L(M(xi, ws\j), y;) -

UOTS. UOTS [37] selects source data by similarity to
the target data and reuses the selected source data to retain
knowledge related to the target domain in fine-tuning. Its
optimization objective is formularized as:

Ltemp = )\ZL DA (1)

The approach of adding selected source data to the fine-
tuning process is essentially a re-weighting of knowledge.

BSS. BSS [8] penalizes small singular values of the
learned representation for suppressing mischievous features,
which corresponds to improving fine-tuning by suppressing
the detrimental knowledge. The optimization objective is
formularized as:

k
Liemp =AY _ 02, (22)

where o refers to the singular value of the learned represen-
tation and k is the number of singular values to be penalized.

11. Detailed implementation and hyper-
parameters

Our experiments were conducted using PyTorch on four
Nvidia RTX 3090 GPUs. The hyper-parameters for fine-
tuning were selected based on the validation sets, and we
report the hyper-parameter settings that achieved the best
accuracy in Tab. 8 and Tab. 9. The data splitting for the train-
ing, validation, and testing sets follows the setup proposed
by You et al. [60].

Tab. 8 presents the selected learning rate and the trade-off
weighting parameter A for L;¢,,,;, in the original methods.
The learning rate was searched over the values [0.03, 0.01,
0.003, 0.001, 0.0005] using a grid search. During fine-tuning,
the final task layer was trained from scratch, with its learning
rate set to be 10 times those of the fine-tuned layers, follow-
ing the approach of Yosinski ef al. [59]. All models were
optimized by SGD with 0.9 momentum and 0.0005 weight
decay for 20 epochs. The learning rates were reduced by a
factor of V10 in the 12" epoch. The selection criterion for
A ensures that Liep,p and Ley,, are of the same magnitude
when the model converges. Other hyper-parameters that
were not specifically mentioned were kept the same as those
in the original paper.

When applying TSRS, we utilized the parameters from
Table Tab. 8 and performed additional grid searches for the
unique hyper-parameters of TSRS, namely the starting block
[, noise intensity ¢, and weighting hyper-parameter o. The
starting block [ was searched over the block numbers, ¢
was searched over the values [0.1, 0.03, 0.01], and o was
searched over [1, 0.1]. For TSRS, the hyper-parameter vector
is denoted as [, ¢, ], and the values are recorded in Table
Tab. 9.



Table 8. Basic hyper-parameter settings ([learning rate, A]).

Dataset Method ResNet50 ViT-B
Baseline [0.01, NA] [0.01, NA]
BSS [0.01,0.001T [0.01, 0.001]
CUB Co-Tuning [0.01, 2.3] [0.01, 1.0]
DELTA [0.01, 0.01] [0.01, 0.01]
UOTS [0.003,1] [0.0005,1]
Baseline [0.01, NA] [0.001, NA]
BSS [0.01,0.001] [0.001, 0.001]
Cars Co-Tuning [0.01, 2.3] [0.001, 1.0]
DELTA [0.01, 0.01] [0.001, 0.01]
UOoTS [0.03,0.3] [0.001,1]
Baseline [0.01, NA] [0.001, NA]
BSS [0.01,0.001] [0.001, 0.001]
Aircraft Co-Tuning [0.01, 2.3] [0.001, 1.0]
DELTA [0.01, 0.01] [0.001, 0.01]
UOoTS [0.01,0.3] [0.001,0.5]

Table 9. Hyper-parameter settings of TSRS ([/, ¢, a]).

Dataset Method ResNet50 ViT-B
Baseline [3,0.2, 1] [10, 0.1, 1]
BSS [3,0.2, 1] [10,0.1, 1]
CUB Co-Tuning [3,0.2, 1] [5,0.01,0.1]
DELTA [3,0.2, 1] [5,0.01, 1]
UOTS [3,0.2, 1] [5,0.01, 1]
Baseline [3,0.2, 1] [5,0.01, 0.1]
BSS [3,0.2,1] [10,0.01,0.1]
Cars Co-Tuning [3,0.2, 1] [10, 0.1, 0.1]
DELTA [3,0.2, 1] [5,0.01,0.1]
UOTS [3,0.2, 1] [5,0.01, 1]
Baseline [3,0.2, 1] [5,0.1, 1]
BSS [3,0.2, 1] [10,0.1, 1]
Aircraft Co-Tuning [3,0.2, 1] [10, 0.1, 1]
DELTA [3,0.2, 1] [5,0.1, 1]
UOTS [3,0.2, 1] [5,0.03,0.1]

The hyper-parameters were searched on a separate vali-
dation set. Once the hyper-parameters were determined, we
combined the training and validation sets to form the final
training set. The test accuracy reported in Tab. | of the main
submission is obtained using these trained models.

12. Detailed explanation of performance change
with respect to [

Fig. 4c in the main submission presents the experimental
results regarding the variation of /, which represents the
starting block of the applied constraint. The performance of
the model initially exhibited improvement and then reached
a stable state as the constraint starting block transitioned
from shallow to deep layers.

This observed behavior can be attributed to the following
reason. The introduction of noise to the input inherently in-
duces input divergence. In the blocks where the L1grs con-
straint is applied, all outputs corresponding to the diverged
inputs are constrained to a common point. This constraint
effectively leads to compression and clustering of the data
space. The process is visually depicted in Fig. 8. Therefore,
at the shallow blocks, due to insufficient feature extraction,
the distance between intra-class features may be larger than
that of inter-class features. This causes the Lgrg constraint
added in the shallow blocks to force the features of different
classes’ samples to cluster together, ultimately impairing the
model’s performance. Supporting evidence for this assump-
tion is provided in Fig. 5 of the main submission, which
presents a visual case.

A o
YA . Y. S
{ Add Noise } { Shrinkage
PSSR ~0TaEgs.
Lo d o
~ALR AN SeBas”
\
I’AAAAA A A‘—> — — _p\/ Foog
VA ApB v o?%9
A A Bar oo’
CAA Y o,
S oA . \os

A clean input A noise input
o clean output o noise output

Figure 8. Illustration of clustering effect. The behavior of Tuning
Stable Rank Shrinkage (TSRS) can be described as the process
of intentionally diverging from the clean input and subsequently
constraining the noise output to align with the clean output in the
feature space. This approach effectively clusters the data space
around the clean input, resulting in the desired effect of shrinkage.
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